
Unit Test Your Code 1

Unit Test Basics 5

Generate unit tests for your code with IntelliTest 17

Run unit tests with Test Explorer 25

Creating and Running Unit Tests for Windows Store Apps 36

Writing Unit Tests 42

Creating and Running Unit Tests for Managed Code 43

Quick Start Test Driven Development with Test Explorer 53

Isolating Code Under Test with Microsoft Fakes 62

How To Create a Data-Driven Unit Test 67

Use UI Automation To Test Your Code 72

Walkthrough Creating, Editing and Maintaining a Coded UI Test 89

Test Windows Phone 8.1 Apps with Coded UI Tests 99

Creating a Data-Driven Coded UI Test 119

Get started with developer testing tools 132

User acceptance testing 141

Track test status 145

Run manual tests 154

Unit Test Your Code

Unit tests give developers and testers a quick way to look for logic errors in the methods of classes in Visual C#, Visual Basic,

and Visual C++ projects.

The unit test tools include:

Test Explorer. Test Explorer lets you run unit tests and view their results. Test Explorer can use any unit test

framework, including a third-party framework, that has an adapter for the Explorer.

1.

Microsoft unit test framework for managed code. The Microsoft unit test framework for managed code is

installed with Visual Studio and provides a framework for testing .NET code.

2.

Microsoft unit test framework for C++. The Microsoft unit test framework for C++ is installed with Visual Studio

and provides a framework for testing native code.

3.

Code coverage tools. You can determine the amount of product code that your unit tests exercise from one

command in Test Explorer.

4.

Microsoft Fakes isolation framework. The Microsoft Fakes isolation framework can create substitute classes and

methods for production and system code that create dependencies in the code under test. By implementing the fake

delegates for a function, you control the behavior and output of the dependency object.

5.

You can also use IntelliTest to explore your .NET code to generate test data and a suite of unit tests. For every statement in

the code, a test input is generated that will execute that statement. A case analysis is performed for every conditional branch

in the code.

Key tasks
Use the following topics to help with understanding and creating unit tests:

Tasks Associated Topics

Quick starts and walkthroughs: Use the following topics to learn

unit testing in Visual Studio from code examples. Walkthrough: Creating and Running Unit

Tests for Managed Code

Quick Start: Test Driven Development

with Test Explorer

Unit testing existing C++ applications

with Test Explorer

Unit testing native code with Test

Explorer

Visual Studio 2015

Unit Test Your Code https://msdn.microsoft.com/en-us/library/dd264975(d=printer).aspx

1 of 4 02.09.2016 13:48

Unit testing with Test Explorer: Learn how Test Explorer can help

create more productive and efficient unit tests. Unit Test Basics

Create a unit test project

Run unit tests with Test Explorer

Install third-party unit test frameworks

Upgrading Unit Tests from Visual Studio

2010

Unit testing managed code:
Writing Unit Tests for the .NET

Framework with the Microsoft Unit Test

Framework for Managed Code

Unit testing C++ code
Writing Unit tests for C/C++ with the

Microsoft Unit Testing Framework for

C++

Isolating unit tests
Isolating Code Under Test with Microsoft

Fakes

Use code coverage to identify what proportion of your

project's code is being tested using unit tests: Learn about the

code coverage feature of Visual Studio Application Lifecycle

Management testing tools.

Using Code Coverage to Determine How

Much Code is being Tested

Perform stress and performance analysis by using load tests

for your unit tests: You can create a load test and add your unit

tests to it to help isolate performance and stress issues in your

application.

Note

Creating and using load tests requires Visual Studio Enterprise.

e2985d15-60a7-4177-93b4-

f986c2936337

03cc073e-9bdf-4530-

ae46-504a51884594

3d6128d2-82b0-42fc-

bda2-23a8aa03be07

Set and enforce quality gates: You can create quality gates to

enforce that tests are run before code is checked in to help ensure

the quality of the code.

Set and Enforce Quality Gates

Extend the unit test type: You can add functionality to your tests

that might not be in the Unit Test Framework. For example, you can

add a test property that specifies if a test should run as a normal

user or not. Or you can extend the framework to add row attributes

to a method and use the data in that row inside the test.

For sample code of how to extend the unit test

framework, see the following Microsoft Web

site.

Unit Test Your Code https://msdn.microsoft.com/en-us/library/dd264975(d=printer).aspx

2 of 4 02.09.2016 13:48

Set testing options: For example, you can specify where test

results are stored.

Configure unit tests by using a .runsettings file

Related tasks
Reviewing Test Results in Microsoft Test Manager

Describes test results and ways to work with them, including how to view, save, and delete them.

Running System Tests Using Microsoft Visual Studio

Provides links to information about using Visual Studio as opposed to using Microsoft Test Manager to run automated

tests.

Reference

Microsoft.VisualStudio.TestTools.UnitTesting

Describes the UnitTesting namespace, which provides attributes, exceptions, asserts, and other classes that support

unit testing.

Microsoft.VisualStudio.TestTools.UnitTesting.Web

Describes the UnitTesting.Web namespace, which extends the UnitTesting namespace by providing support for

ASP.NET and Web service unit tests.

External resources

Videos

Channel 9: Unit testing your Windows Store apps built using XAML

Forums

Visual Studio Unit Testing

Guidance

Testing for Continuous Delivery with Visual Studio 2012 – Chapter 2: Unit Testing: Testing the Inside

Unit Test Your Code https://msdn.microsoft.com/en-us/library/dd264975(d=printer).aspx

3 of 4 02.09.2016 13:48

Reference

Content Index for Unit Tests

See Also
Improve Code Quality

Testing the application

© 2016 Microsoft

Unit Test Your Code https://msdn.microsoft.com/en-us/library/dd264975(d=printer).aspx

4 of 4 02.09.2016 13:48

Unit Test Basics

Updated: January 7, 2016

Check that your code is working as expected by creating and running unit tests. It’s called unit testing because you break

down the functionality of your program into discrete testable behaviors that you can test as individual units. Visual Studio

Test Explorer provides a flexible and efficient way to run your unit tests and view their results in Visual Studio. Visual Studio

installs the Microsoft unit testing frameworks for managed and native code. Use a unit testing framework to create unit tests,

run them, and report the results of these tests. Rerun unit tests when you make changes to test that your code is still working

correctly. When you use Visual Studio Enterprise, you can run tests automatically after every build.

Unit testing has the greatest effect on the quality of your code when it’s an integral part of your software development

workflow. As soon as you write a function or other block of application code, create unit tests that verify the behavior of the

code in response to standard, boundary, and incorrect cases of input data, and that check any explicit or implicit

assumptions made by the code. With test driven development, you create the unit tests before you write the code, so you use

the unit tests as both design documentation and functional specifications.

You can quickly generate test projects and test methods from your code, or manually create the tests as you need them.

When you use IntelliTest to explore your .NET code, you can generate test data and a suite of unit tests. For every statement

in the code, a test input is generated that will execute that statement. Find out how to generate unit tests for your code.

Test Explorer can also run third-party and open source unit test frameworks that have implemented Test Explorer add-on

interfaces. You can add many of these frameworks through the Visual Studio Extension Manager and the Visual Studio

gallery. See Install third-party unit test frameworks

Quick starts

The MyBank Solution example

Create unit test projects and test methods

Write your tests

Run tests in Test Explorer

Run and view tests

Unit testing overview

Quick starts

For an introduction to unit testing that takes you directly into coding, see one of these topics:

Walkthrough: Creating and Running Unit Tests for Managed Code

Visual Studio 2015

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

1 of 12 03.09.2016 15:37

Quick Start: Test Driven Development with Test Explorer

Unit testing native code with Test Explorer

The MyBank Solution example
In this topic, we use the development of a fictional application called MyBank as an example. You don’t need the actual

code to follow the explanations in this topic. Test methods are written in C# and presented by using the Microsoft Unit

Testing Framework for Managed Code, However, the concepts are easily transferred to other languages and frameworks.

Our first attempt at a design for the MyBank application includes an accounts component that represents an individual

account and its transactions with the bank, and a database component that represents the functionality to aggregate and

manage the individual accounts.

We create a MyBank solution that contains two projects:

Accounts

BankDb

Our first attempt at designing the Accounts project contain a class to hold basic information about an account, an

interface that specifies the common functionality of any type of account, like depositing and withdrawing assets from the

account, and a class derived from the interface that represents a checking account. We begin the Accounts projects by

creating the following source files:

AccountInfo.cs defines the basic information for an account.

IAccount.cs defines a standard IAccount interface for an account, including methods to deposit and withdraw

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

2 of 12 03.09.2016 15:37

assets from an account and to retrieve the account balance.

CheckingAccount.cs contains the CheckingAccount class that implements the IAccounts interface for a

checking account.

We know from experience that one thing a withdrawal from a checking account must do is to make sure that the amount

withdrawn is less than the account balance. So we override the IAccount.Withdaw method in CheckingAccount with a

method that checks for this condition. The method might look like this:

Now that we have some code, it’s time for testing.

Create unit test projects and test methods
It is often quicker to generate the unit test project and unit test stubs from your code. Or you can choose to create the

unit test project and tests manually depending on your requirements.

Generate unit test project and unit test stubs

From the code editor window, right-click and choose Create Unit Tests from the context menu.1.

public void Withdraw(double amount)

{

if(m_balance >= amount)

 {

 m_balance ‐= amount;

 }

else

 {

throw new ArgumentException(amount, "Withdrawal exceeds balance!")

 }

}

C#

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

3 of 12 03.09.2016 15:37

Click OK to accept the defaults to create your unit tests, or change the values used to create and name the unit test

project and the unit tests. You can select the code that is added by default to the unit test methods.

2.

The unit test stubs are created in a new unit test project for all the methods in the class.3.

Now jump ahead to learn how to add code to the unit test methods to make your unit test meaningful, and any

extra unit tests that you might want to add to thoroughly test your code.

4.

Create your unit test project and unit tests manually

A unit test project usually mirrors the structure of a single code project. In the MyBank example, you add two unit test

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

4 of 12 03.09.2016 15:37

projects named AccountsTests and BankDbTests to the MyBanks solution. The test project names are arbitrary, but

adopting a standard naming convention is a good idea.

To add a unit test project to a solution:

On the File menu, choose New and then choose Project (Keyboard Ctrl + Shift + N).1.

On the New Project dialog box, expand the Installed node, choose the language that you want to use for your test

project, and then choose Test.

2.

To use one of the Microsoft unit test frameworks, choose Unit Test Project from the list of project templates.

Otherwise, choose the project template of the unit test framework that you want to use. To test the Accounts

project of our example, you would name the project AccountsTests.

Warning

Not all third-party and open source unit test frameworks provide a Visual Studio project template. Consult the

framework document for information about creating a project.

3.

In your unit test project, add a reference to the code project under test, in our example to the Accounts project.

To create the reference to the code project:

Select the project in Solution Explorer.a.

On the Project menu, choose Add Reference.b.

On the Reference Manager dialog box, open the Solution node and choose Projects. Select the code

project name and close the dialog box.

c.

4.

Each unit test project contains classes that mirror the names of the classes in the code project. In our example, the

AccountsTests project would contain the following classes:

AccountInfoTests class contains the unit test methods for the AccountInfo class in the BankAccount project

CheckingAccountTests class contains the unit test methods for CheckingAccount class.

Write your tests
The unit test framework that you use and Visual Studio IntelliSense will guide you through writing the code for your unit

tests for a code project. To run in Test Explorer, most frameworks require that you add specific attributes to identify unit

test methods. The frameworks also provide a way—usually through assert statements or method attributes—to indicate

whether the test method has passed or failed. Other attributes identify optional setup methods that are at class

initialization and before each test method and teardown methods that are run after each test method and before the class

is destroyed.

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

5 of 12 03.09.2016 15:37

The AAA (Arrange, Act, Assert) pattern is a common way of writing unit tests for a method under test.

The Arrange section of a unit test method initializes objects and sets the value of the data that is passed to the

method under test.

The Act section invokes the method under test with the arranged parameters.

The Assert section verifies that the action of the method under test behaves as expected.

To test the CheckingAccount.Withdraw method of our example, we can write two tests: one that verifies the standard

behavior of the method, and one that verifies that a withdrawal of more than the balance will fail. In the

CheckingAccountTests class, we add the following methods:

Note that Withdraw_ValidAmount_ChangesBalance uses an explicit Assert statement to determine whether the test

method passes or fails, while Withdraw_AmountMoreThanBalance_Throws uses the ExpectedException attribute to

determine the success of the test method. Under the covers, a unit test framework wraps test methods in try/catch

statements. In most cases, if an exception is caught, the test method fails and the exception is ignored. The

ExpectedException attribute causes the test method to pass if the specified exception is thrown.

For more information about the Microsoft Unit Testing Frameworks, see one of the following topics:

[TestMethod]

public void Withdraw_ValidAmount_ChangesBalance()

{

// arrange

double currentBalance = 10.0;

double withdrawal = 1.0;

double expected = 9.0;

var account = new CheckingAccount("JohnDoe", currentBalance);

// act

 account.Withdraw(withdrawal);

double actual = account.Balance;

// assert

 Assert.AreEqual(expected, actual);

}

[TestMethod]

[ExpectedException(typeof(ArgumentException))]

public void Withdraw_AmountMoreThanBalance_Throws()

{

// arrange

var account = new CheckingAccount("John Doe", 10.0);

// act

 account.Withdraw(20.0);

// assert is handled by the ExpectedException

}

C#

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

6 of 12 03.09.2016 15:37

Writing Unit Tests for the .NET Framework with the Microsoft Unit Test Framework for Managed Code

Writing Unit tests for C/C++ with the Microsoft Unit Testing Framework for C++

Set timeouts for unit tests
To set a timeout on an individual test method:

To set the timeout to the maximum allowed:

Run tests in Test Explorer
When you build the test project, the tests appear in Test Explorer. If Test Explorer is not visible, choose Test on the Visual

Studio menu, choose Windows, and then choose Test Explorer.

[TestMethod]

[Timeout(TestTimeout.Infinite)] // Milliseconds

public void My_Test ()

{ ...

}

VB

C#

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

7 of 12 03.09.2016 15:37

As you run, write, and rerun your tests, the default view of Test Explorer displays the results in groups of Failed Tests,

Passed Tests, Skipped Tests and Not Run Tests. You can choose a group heading to open the view that displays all

them tests in that group.

You can also filter the tests in any view by matching text in the search box at the global level or by selecting one of the

pre-defined filters. You can run any selection of the tests at any time. The results of a test run are immediately apparent in

the pass/fail bar at the top of the explorer window. Details of a test method result are displayed when you select the test.

Run and view tests

The Test Explorer toolbar helps you discover, organize, and run the tests that you are interested in.

You can choose Run All to run all your tests, or choose Run to choose a subset of tests to run. After you run a set of

tests, a summary of the test run appears at the bottom of the Test Explorer window. Select a test to view the details of

that test in the bottom pane. Choose Open Test from the context menu (Keyboard: F12) to display the source code for

the selected test.

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

8 of 12 03.09.2016 15:37

If individual tests have no dependencies that prevent them from being run in any order, turn on parallel test execution

with the toggle button on the toolbar. This can noticeably reduce the time taken to run all the tests.

Run tests after every build

Warning

Running unit tests after every build is supported only in Visual Studio Enterprise.

To run your unit tests after each local build, choose Test on the standard menu, choose Run Tests After

Build on the Test Explorer toolbar.

Filter and group the test list

When you have a large number of tests, you can Type in Test Explorer search box to filter the list by the specified string.

You can restrict your filter event more by choosing from the filter list.

To group your tests by category, choose the Group By button.

For more information, see Run unit tests with Test Explorer

Q&A
Q: How do I debug unit tests?

A: Use Test Explorer to start a debugging session for your tests. Stepping through your code with the Visual Studio

debugger seamlessly takes you back and forth between the unit tests and the project under test. To start debugging:

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

9 of 12 03.09.2016 15:37

In the Visual Studio editor, set a breakpoint in one or more test methods that you want to debug.

Note

Because test methods can run in any order, set breakpoints in all the test methods that you want to debug.

1.

In Test Explorer, select the test methods and then choose Debug Selected Tests from the shortcut menu.2.

Learn more details about debugging unit tests.

Q: If I’m using TDD, how do I generate code from my tests?

A: Use IntelliSense to generate classes and methods in your project code. Write a statement in a test method that calls the

class or method that you want to generate, then open the IntelliSense menu under the call. If the call is to a constructor of

the new class, choose Generate new type from the menu and follow the wizard to insert the class in your code project. If

the call is to a method, choose Generate new method from the IntelliSense menu.

Q: Can I create unit tests that take multiple sets of data as input to run the test?

A: Yes. Data-driven test methods let you test a range of values with a single unit test method. Use a DataSource attribute

for the test method that specifies the data source and table that contains the variable values that you want to test. In the

method body, you assign the row values to variables using the TestContext.DataRow[ColumnName] indexer.

Note

These procedures apply only to test methods that you write by using the Microsoft unit test framework for managed

code. If you’re using a different framework, consult the framework documentation for equivalent functionality.

For example, assume we add an unnecessary method to the CheckingAccount class that is named AddIntegerHelper.

AddIntegerHelper adds two integers.

To create a data-driven test for the AddIntegerHelper method, we first create an Access database named

AccountsTest.accdb and a table named AddIntegerHelperData. The AddIntegerHelperData table defines columns

to specify the first and second operands of the addition and a column to specify the expected result. We fill a number of

rows with appropriate values.

C#

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

10 of 12 03.09.2016 15:37

The attributed method runs once for each row in the table. Test Explorer reports a test failure for the method if any of the

iterations fail. The test results detail pane for the method shows you the pass/fail status method for each row of data.

Learn more about data-driven unit tests.

Q: Can I view how much of my code is tested by my unit tests?

A: Yes. You can determine the amount of your code that is actually being tested by your unit tests by using the Visual

Studio code coverage tool. Native and managed languages and all unit test frameworks that can be run by the Unit Test

Framework are supported.

You can run code coverage on selected tests or on all tests in a solution. The Code Coverage Results window displays the

percentage of the blocks of product code that were exercised by line, function, class, namespace and module.

To run code coverage for test methods in a solution, choose Tests on the Visual Studio menu and then choose Analyze

code coverage.

Coverage results appear in the Code Coverage Results window.

Learn more about code coverage .

Q: How can I test methods in my code that have external dependencies?

[DataSource(

@"Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Projects\MyBank\TestData

\AccountsTest.accdb",

"AddIntegerHelperData"

)]

[TestMethod()]

public void AddIntegerHelper_DataDrivenValues_AllShouldPass()

{

var target = new CheckingAccount();

int x = Convert.ToInt32(TestContext.DataRow["FirstNumber"]);

int y = Convert.ToInt32(TestContext.DataRow["SecondNumber"]);

int expected = Convert.ToInt32(TestContext.DataRow["Sum"]);

int actual = target.AddIntegerHelper(x, y);

 Assert.AreEqual(expected, actual);

}

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

11 of 12 03.09.2016 15:37

A: Yes. If you have Visual Studio Enterprise, Microsoft Fakes can be used with test methods that you write by using unit

test frameworks for managed code.

Microsoft Fakes uses two approaches to create substitute classes for external dependencies.

Stubs generate substitute classes derived from the parent interface of the target dependency class. Stub methods

can be substituted for public virtual methods of the target class.

1.

Shims use runtime instrumentation to divert calls to a target method to a substitute shim method for non-virtual

methods.

2.

In both approaches, you use the generated delegates of calls to the dependency method to specify the behavior that you

want in the test method.

Learn more about isolating unit test methods with Microsoft Fakes.

Q: Can I use other unit test frameworks to create unit tests?

A: Yes, follow these steps to find and install other frameworks. After you restart Visual Studio, reopen your solution to

create your unit tests, and then select your installed frameworks here:

Your unit test stubs will be created using the selected framework.

© 2016 Microsoft

Unit Test Basics https://msdn.microsoft.com/en-us/library/hh694602(d=printer).aspx

12 of 12 03.09.2016 15:37

Generate unit tests for your code with
IntelliTest

Updated: October 5, 2015

IntelliTest explores your .NET code to generate test data and a suite of unit tests. For every statement in the code, a test

input is generated that will execute that statement. A case analysis is performed for every conditional branch in the code. For

example, if statements, assertions, and all operations that can throw exceptions are analyzed. This analysis is used to

generate test data for a parameterized unit test for each of your methods, creating unit tests with high code coverage.

When you run IntelliTest, you can easily see which tests are failing and add any necessary code to fix them. You can select

which of the generated tests to save into a test project to provide a regression suite. As you change your code, rerun

IntelliTest to keep the generated tests in sync with your code changes.

IntelliTest is available for C# only and does not support x64 configuration.

Get started with IntelliTest
You'll need Visual Studio Enterprise.

Explore: Use IntelliTest to explore your code and generate unit tests

To generate unit tests, your types must be public. Otherwise, create unit tests first before you generate them.

Open your solution in Visual Studio. Then open the class file that has methods you want to test.1.

Right-click in a method in your code and choose Run IntelliTest to generate unit tests for the code in your

method.

2.

Visual Studio 2015

Generate unit tests for your code with IntelliTest https://msdn.microsoft.com/en-us/library/dn823749(d=printer).aspx

1 of 8 02.09.2016 13:35

IntelliTest runs your code many times with different inputs. Each run is represented in the table showing the

input test data and the resulting output or exception.

To generate unit tests for all the public methods in a class, simply right-click in the class rather than a specific

Generate unit tests for your code with IntelliTest https://msdn.microsoft.com/en-us/library/dn823749(d=printer).aspx

2 of 8 02.09.2016 13:35

method. Then choose Run IntelliTest. Use the drop-down list in the Exploration Results window to display the

unit tests and the input data for each method in the class.

For tests that pass, check that the reported results in the result column match your expectations for your code.

For tests that fail, fix your code as appropriate. Then rerun IntelliTest to validate the fixes.

Persist: Save the unit tests as a regression suite

Select the data rows that you want to save with the parameterized unit test into a test project.

You can view the test project and the parameterized unit test that has been created - the individual unit tests,

corresponding to each of the rows, are saved in the .g.cs file in the test project, and a parameterized unit test is

saved in its corresponding .cs file. You can run the unit tests and view the results from Test Explorer just as you

1.

Generate unit tests for your code with IntelliTest https://msdn.microsoft.com/en-us/library/dn823749(d=printer).aspx

3 of 8 02.09.2016 13:35

would for any unit tests that you created manually.

Any necessary references are also added to the test project.

If the method code changes, rerun IntelliTest to keep the unit tests in sync with the changes.

Assist: Use IntelliTest to focus code exploration

If you have more complex code, IntelliTest assists you with focusing exploration of your code. For example, if

you have a method that has an interface as a parameter, and there is more than one class that implements that

interface, IntelliTest discovers those classes and reports a warning.

View the warnings to decide what you want to do.

1.

After you investigate the code and understand what you want to test, you can fix the warning to choose which

classes to use to test the interface.

2.

Generate unit tests for your code with IntelliTest https://msdn.microsoft.com/en-us/library/dn823749(d=printer).aspx

4 of 8 02.09.2016 13:35

This choice is added into the PexAssemblyInfo.cs file.

[assembly: PexUseType(typeof(Camera))]

Now you can rerun IntelliTest to generate a parameterized unit test and test data just using the class that you

fixed.

3.

Specify: Use IntelliTest to validate correctness properties that you specify in code

Specify the general relationship between inputs and outputs that you want the generated unit tests to validate. This

specification is encapsulated in a method that looks like a test method but is universally quantified. This is the

parameterized unit test method, and any assertions you make must hold for all possible input values that IntelliTest can

generate.

Q & A

Q: Can you use IntelliTest for unmanaged code?

A: No, IntelliTest only works with managed code.

Q: When does a generated test pass or fail?

A: It passes like any other unit test if no exceptions occur. It fails if any assertion fails, or if the code under test throws an

unhandled exception.

Generate unit tests for your code with IntelliTest https://msdn.microsoft.com/en-us/library/dn823749(d=printer).aspx

5 of 8 02.09.2016 13:35

If you have a test that can pass if certain exceptions are thrown, you can set one of the following attributes based on

your requirements at the test method, test class or assembly level:

PexAllowedExceptionAttribute

PexAllowedExceptionFromTypeAttribute

PexAllowedExceptionFromTypeUnderTestAttribute

PexAllowedExceptionFromAssemblyAttribute

Q: Can I add assumptions to the parameterized unit test?

A: Yes, use assumptions to specify which test data is not required for the unit test for a specific method. Use the

PexAssume class to add assumptions. For example, you can add an assumption that the lengths variable is not null like

this.

PexAssume.IsNotNull(lengths);

If you add an assumption and rerun IntelliTest, the test data that is no longer relevant will be removed.

Q: Can I add assertions to the parameterized unit test?

A: Yes, IntelliTest will check that what you are asserting in your statement is in fact correct when it runs the unit tests.

Use the PexAssert class or the assertion API that comes with the test framework to add assertions. For example, you can

add an assertion that two variables are equal.

PexAssert.AreEqual(a, b);

If you add an assertion and rerun IntelliTest, it will check that your assertion is valid and the test fails if it is not.

Q: Can I generate parameterized unit tests without running IntelliTest first?

A: Yes, right-click in the class or method, then choose Create IntelliTest.

Generate unit tests for your code with IntelliTest https://msdn.microsoft.com/en-us/library/dn823749(d=printer).aspx

6 of 8 02.09.2016 13:35

Accept the default format to generate your tests, or change how your project and tests are named. You can create a

new test project or save your tests to an existing project.

Q: Can I use other unit test frameworks with IntelliTest?

A: Yes, follow these steps to find and install other frameworks. After you restart Visual Studio and reopen your solution,

right-click in the class or method, then choose Create IntelliTest. Select your installed framework here:

Generate unit tests for your code with IntelliTest https://msdn.microsoft.com/en-us/library/dn823749(d=printer).aspx

7 of 8 02.09.2016 13:35

Then run IntelliTest to generate individual unit tests in their corresponding .g.cs files.

Q: Can I learn more about how the tests are generated?

A: Yes, to get a high-level overview, read this blog post.

© 2016 Microsoft

Generate unit tests for your code with IntelliTest https://msdn.microsoft.com/en-us/library/dn823749(d=printer).aspx

8 of 8 02.09.2016 13:35

Run unit tests with Test Explorer

Use Test Explorer to run unit tests from Visual Studio or third-party unit test projects, group tests into categories, filter the

test list, and create, save, and run playlists of tests. You can also debug tests and analyze test performance and code

coverage.

Contents
Unit test frameworks and test projects

Run tests in Test Explorer

View test results

Group and filter the test list

Create custom playlists

Debug and analyze unit tests

External resources

Unit test frameworks and test projects
Visual Studio includes the Microsoft unit testing frameworks for both managed and native code. However, Test Explorer

can also run any unit test framework that has implemented a Test Explorer adapter. For more information about installing

third-party unit test frameworks, see Install third-party unit test frameworks

Test Explorer can run tests from multiple test projects in a solution and from test classes that are part of the production

code projects. Test projects can use different unit test frameworks. When the code under test is written for the .NET

Framework, the test project can be written in any language that also targets the .NET Framework, regardless of the

language of the target code. Native C/C++ code projects must be tested by using a C++ unit test framework.

Contents

Run tests in Test Explorer
Run tests|Run tests after every build

When you build the test project, the tests appear in Test Explorer. If Test Explorer is not visible, choose Test on the Visual

Studio menu, choose Windows, and then choose Test Explorer.

Visual Studio 2015

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

1 of 11 02.09.2016 13:56

As you run, write, and rerun your tests, Test Explorer displays the results in default groups of Failed Tests, Passed Tests,

Skipped Tests and Not Run Tests. You can change the way Test Explorer groups your tests.

You can perform much of the work of finding, organizing and running tests from the Test Explorer toolbar.

Contents

Run tests

You can run all the tests in the solution, all the tests in a group, or a set of tests that you select. Do one of the following:

To run all the tests in a solution, choose Run All.

To run all the tests in a default group, choose Run... and then choose the group on the menu.

Select the individual tests that you want to run, open the context menu for a selected test and then choose Run

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

2 of 11 02.09.2016 13:56

Selected Tests.

If individual tests have no dependencies that prevent them from being run in any order, turn on parallel test

execution with the toggle button on the toolbar. This can noticeably reduce the time taken to run all the

tests.

The pass/fail bar at the top of the Test Explorer window is animated as the tests run. At the conclusion of the test run,

the pass/fail bar turns green if all tests passed or turns red if any test failed.

Contents

Run tests after every build

Warning

Running unit tests after every build is supported in Visual Studio Enterprise.

To run your unit tests after each local build, choose Test on the standard menu, and then choose Run Tests

After Build on the Test Explorer toolbar.

Contents

View test results
View test details|View the source code of a test method

As you run, write, and rerun your tests, Test Explorer displays the results in groups of Failed Tests, Passed Tests, Skipped

Tests and Not Run Tests. The details pane at the bottom of Test Explorer displays a summary of the test run.

View test details

To view the details of an individual test, select the test.

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

3 of 11 02.09.2016 13:56

The test details pane displays the following information:

The source file name and the line number of the test method.

The status of the test.

The elapsed time that the test method took to run.

If the test fails, the details pane also displays:

The message returned by the unit test framework for the test.

The stack trace at the time the test failed.

Contents

View the source code of a test method

To display the source code for a test method in the Visual Studio editor, select the test and then choose Open Test on

the context menu (Keyboard: F12).

Contents

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

4 of 11 02.09.2016 13:56

Group and filter the test list
Grouping the test list|Group by traits|Search and filter the test list

Test Explorer lets you group your tests into predefined categories. Most unit test frameworks that run in Test Explorer let

you define your own categories and category/value pairs to group your tests. You can also filter the list of tests by

matching strings against test properties.

Grouping the test list

To change the way that tests are organized, choose the down arrow next to the Group By button and select a

new grouping criteria.

Test Explorer groups

Group Description

Duration Groups test by execution time: Fast, Medium, and Slow.

Outcome Groups tests by execution results: Failed Tests, Skipped Tests, Passed Tests.

Traits Groups test by category/value pairs that you define. The syntax to specify trait categories and

values is defined by the unit test framework.

Project Groups test by the name of the projects.

Contents

Group by traits

A trait is usually a category name/value pair, but it can also be a single category. Traits can be assigned to methods

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

5 of 11 02.09.2016 13:56

that are identified as a test method by the unit test framework. A unit test framework can define trait categories. You

can add values to the trait categories to define your own category name/value pairs. The syntax to specify trait

categories and values is defined by the unit test framework.

Traits in the Microsoft Unit Testing Framework for Managed Code

In the Microsoft unit test framework for managed apps, you define a trait name/ value pair in a TestPropertyAttribute

attribute. The test framework also contains these predefined traits:

Trait Description

OwnerAttribute The Owner category is defined by the unit test framework and requires you to provide a

string value of the owner.

PriorityAttribute The Priority category is defined by the unit test framework and requires you to provide an

integer value of the priority.

TestCategoryAttribute The TestCategory attribute enables you to provide a category without a value. A category

defined by the TestCategory attribute can also be the category of a TestProperty attribute.

TestPropertyAttribute The TestProperty attribute enables you to define trait category/value pair.

Traits in the Microsoft Unit Testing Framework for C++

To define a trait, use the TEST_METHOD_ATTRIBUTE macro. For example, to define a trait named TEST_MY_TRAIT:

To use the defined trait in your unit tests:

C++ trait attribute macros

#define TEST_MY_TRAIT(traitValue) TEST_METHOD_ATTRIBUTE(L"MyTrait", traitValue)

BEGIN_TEST_METHOD_ATTRIBUTE(Method1)

 TEST_OWNER(L"OwnerName")

 TEST_PRIORITY(1)

 TEST_MY_TRAIT(L"thisTraitValue")

END_TEST_METHOD_ATTRIBUTE()

TEST_METHOD(Method1)

{

 Logger::WriteMessage("In Method1");

 Assert::AreEqual(0, 0);

}

C++

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

6 of 11 02.09.2016 13:56

Macro Description

TEST_METHOD_ATTRIBUTE(attributeName,

attributeValue)

Use the TEST_METHOD_ATTRIBUTE macro to define a

trait.

TEST_OWNER(ownerAlias) Use the predefined Owner trait to specify an owner of

the test method.

TEST_PRIORITY(priority) Use the predefined Priority trait to assign relative

priorities to your test methods.

Contents

Search and filter the test list

You can use Test Explorer filters to limit the test methods in your projects that you view and run.

When you type a string in in the Test Explorer search box and choose ENTER, the test list is filtered to display only

those tests whose fully qualified names contain the string.

To filter by a different criteria:

Open the drop-down list to the right of the search box.1.

Choose a new criteria.2.

Enter the filter value between the quotation marks.3.

Note

Searches are case insensitive and match the specified string to any part of the criteria value.

Qualifier Description

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

7 of 11 02.09.2016 13:56

Trait Searches both trait category and value for matches. The syntax to specify trait categories and

values are defined by the unit test framework.

Project Searches the test project names for matches.

Error Message Searches the user-defined error messages returned by failed asserts for matches.

File Path Searches the fully qualified file name of test source files for matches.

Fully Qualified

Name

Searches the fully qualified file name of test namespaces, classes, and methods for matches.

Output Searches the user-defined error messages that are written to standard output (stdout) or

standard error (stderr). The syntax to specify output messages are defined by the unit test

framework.

Outcome Searches the Test Explorer category names for matches: Failed Tests, Skipped Tests, Passed

Tests.

To exclude a subset of the results of a filter, use the following syntax:

For example,

returns all tests that include "MyClass" in their name except those tests that also include "PerfTest" in their name.

Contents

Create custom playlists
You can create and save a list of tests that you want to run or view as a group. When you select a playlist, the tests in the

list are displayed Test Explorer. You can add a test to more than one playlist, and all tests in your project are available

when you choose the default All Tests playlist.

FilterName:"Criteria" ‐FilterName:"SubsetCriteria"

FullName:"MyClass" ‐ FullName:"PerfTest"

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

8 of 11 02.09.2016 13:56

To create a playlist, choose one or more tests in Test Explorer. On the context menu, choose Add to Playlist,

NewPlaylist. Save the file with the name and location that you specify in the Create New Playlist dialog box.

To add tests to a playlist, choose one or more tests in Test Explorer. On the context menu, choose Add to Playlist, and

then choose the playlist that you want to add the tests to.

To open a playlist, choose Test, Playlist from the Visual Studio menu, and either choose from the list of recently used

playlists, or choose Open Playlist to specify the name and location of the playlist.

If individual tests have no dependencies that prevent them from being run in any order, turn on parallel test execution

with the toggle button on the toolbar. This can noticeably reduce the time taken to run all the tests.

Contents

Debug and analyze unit tests
Debug unit tests|Diagnose test method performance issues|Analyze unit test code coverage

Debug unit tests

You can use Test Explorer to start a debugging session for your tests. Stepping through your code with the Visual

Studio debugger seamlessly takes you back and forth between the unit tests and the project under test. To start

debugging:

In the Visual Studio editor, set a breakpoint in one or more test methods that you want to debug.

Note

Because test methods can run in any order, set breakpoints in all the test methods that you want to debug.

1.

In Test Explorer, select the test methods and then choose Debug Selected Tests on the context menu.2.

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

9 of 11 02.09.2016 13:56

For more information, about the debugger, see Debugging in Visual Studio.

Contents

Diagnose test method performance issues

To diagnose why a test method is taking too much time, select the method in Test Explorer and then choose Profile on

the context menu. See Using Profiling Tools.

Analyze unit test code coverage

Note

Unit test code coverage is available only in Visual Studio Enterprise.

You can determine the amount of your product code that is actually being tested by your unit tests by using the Visual

Studio code coverage tool. You can run code coverage on selected tests or on all tests in a solution.

To run code coverage for test methods in a solution:

Choose Tests on the Visual Studio menu and then choose Analyze code coverage.1.

Choose one of the following commands from the sub-menu:

Selected tests runs the test methods that you have selected in Test Explorer.

All tests runs all the test methods in the solution.

2.

The Code Coverage Results window displays the percentage of the blocks of product code that were exercised by line,

function, class, namespace and module.

For more information, see Using Code Coverage to Determine How Much Code is being Tested.

Contents

External resources

Guidance

Testing for Continuous Delivery with Visual Studio 2012 – Chapter 2: Unit Testing: Testing the Inside

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

10 of 11 02.09.2016 13:56

See Also
Unit Test Your Code

Run a unit test as a 64-bit process

© 2016 Microsoft

Run unit tests with Test Explorer https://msdn.microsoft.com/en-us/library/hh270865(d=printer).aspx

11 of 11 02.09.2016 13:56

Walkthrough: Creating and Running Unit
Tests for Windows Store Apps

Visual Studio includes support for unit testing managed Windows 8.x Store apps and includes unit test library templates for

Visual C#, Visual Basic and Visual C++.

Tip

For more information about developing Windows 8.x Store apps, see Getting started with Windows Store apps.

Visual Studio provides the following unit testing functionality:

Create unit test projects

Edit the Manifest for the Unit Test Project

Code the Unit Test

Run Unit Tests

The following procedures describe the steps to create, run and debug unit tests for managed Windows 8 Windows 8.x Store

app.

Prerequisites
Visual Studio

Create unit test projects

To create a unit test project for a Windows Store app

From the File menu, choose New Project.

The New Project dialog displays.

1.

Under Templates, choose the programming language you want to create unit test in and then choose the

associated Windows 8.x Store unit test library. For example, choose Visual C# , then choose Windows Store, and

then choose Unit Test Library (Windows Store apps).

2.

Visual Studio 2015

Walkthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.microsoft.com/en-us/library/hh440545(d=printer).aspx

1 of 6 03.09.2016 15:40

Note

Visual Studio includes unit test library templates for Visual C#, Visual Basic and Visual C++.

(Optional) In the Name textbox, enter the name you want to use for the Windows 8.x Storeunit test project.3.

(Optional) Modify the path where you want to create the project by entering it in the Location textbox, or

choosing the Browse button.

4.

(Optional) In the Solution name textbox, enter that name you want to use for your solution.5.

Leave the Create directory for solution option selected and choose the OK button.

Solution Explorer is populated with your new Windows 8.x Storeunit test project and the code editor displays the

default unit test titled UnitTest1.

6.

Walkthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.microsoft.com/en-us/library/hh440545(d=printer).aspx

2 of 6 03.09.2016 15:40

Edit the Manifest for the Unit Test Project
It may be necessary to edit the manifest for the unit test project to provide required capabilities to run the app.

To edit the unit test project’s Windows Store application manifest file

In Solution Explorer, in the new Windows 8.x Store unit test project, right-click the Package.appxmanifest file and

choose Open.

The Manifest Designer displays for editing.

1.

In the Manifest Designer, choose the Capabilities tab.2.

In the list under Capabilities, select the capabilities that you need your unit test and the code that it testing to

have. For example, select the Internet checkbox if the unit test needs and the code it is testing need to have the

capability to access the internet.

Note

The capabilities you select should only include capabilities that are necessary for the Windows 8.x Store unit test

to function correctly. The capabilities should never have to include capabilities that are not part of the Windows

8.x Store app being tested and generally should be a subset of the capabilities specified for the Windows 8.x

Storeapp under test.

For more information about the Manifest Designer, see Configure a Windows 8.1 app package by using the

manifest designer.

3.

Walkthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.microsoft.com/en-us/library/hh440545(d=printer).aspx

3 of 6 03.09.2016 15:40

Code the Unit Test

To code the unit test for a Windows Store app

In the Code Editor, edit the unit test and add the asserts and logic required for your test.

For more information, see in Using the Assert Classes in the MSDN library.

1.

Run Unit Tests

To build the solution and run the unit test using Test Explorer

On the Test menu, choose Windows, and then choose Test Explorer.

Test Explorer displays without your test being listed.

1.

From the Build menu, choose Build Solution.

Your unit test is now listed.

2.

Walkthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.microsoft.com/en-us/library/hh440545(d=printer).aspx

4 of 6 03.09.2016 15:40

Note

You must build the solution to update the list of unit tests in Test Explorer.

Warning

Visual Studio known issue: You must open Test Explorer prior to building the test project.

In Test Explorer, choose the unit test you created.

Tip

Test Explorer provides a link to the source code next to Source:.

3.

Choose Run All.

Tip

You can select one or more unit tests listed in Explorer and then right-click and choose Run Selected Tests.

Additionally, you can choose to Debug Selected Tests, Open Test, and use the Properties option.

The unit test runs. Upon completion, Test Explorer displays the test status, elapsed time and provides a link to the

source.

4.

Walkthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.microsoft.com/en-us/library/hh440545(d=printer).aspx

5 of 6 03.09.2016 15:40

External Resources

Videos

Channel 9: Unit testing your Windows Store apps built using XAML

Forums

Visual Studio Unit Testing

MSDN Library

MSDN Library – Creating and Running Unit Tests for Existing Code (Visual Studio 2010)

See Also
Testing Store apps with Visual Studio

Build and test a Windows Store app using Team Foundation Build

© 2016 Microsoft

Walkthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.microsoft.com/en-us/library/hh440545(d=printer).aspx

6 of 6 03.09.2016 15:40

Writing Unit Tests for the .NET Framework
with the Microsoft Unit Test Framework for
Managed Code

In this section

Walkthrough: Creating and Running Unit Tests for Managed Code

Quick Start: Test Driven Development with Test Explorer

Using Microsoft.VisualStudio.TestTools.UnitTesting Members in Unit Tests

Using the Assert Classes

How To: Create a Data-Driven Unit Test

Unit tests for Generic Methods

How to: Configure Unit Tests to Target An Earlier Version of the .NET Framework

Sample Project for Creating Unit Tests

© 2016 Microsoft

Visual Studio 2015

Writing Unit Tests for the .NET Framework with the Microsoft Unit Test ... https://msdn.microsoft.com/en-us/library/hh598960(d=printer).aspx

1 of 1 03.09.2016 15:41

Walkthrough: Creating and Running Unit
Tests for Managed Code

This walkthrough will step you through creating, running, and customizing a series of unit tests using the Microsoft unit test

framework for managed code and the Visual Studio Test Explorer. You start with a C# project that is under development,

create tests that exercise its code, run the tests, and examine the results. Then you can change your project code and re-run

the tests.

This topic contains the following sections:

Prepare the walkthrough

Create a unit test project

Create the test class

Test class requirements

Create the first test method

Test method requirements

Build and run the test

Fix your code and rerun your tests

Use unit tests to improve your code

Note

This walkthrough uses the Microsoft unit test framework for managed code. Test Explorer also can run tests from third

party unit test frameworks that have adapters for Test Explorer. For more information, see Install third-party unit test

frameworks

Note

For information about how to run tests from a command line, see Walkthrough: using the command-line test utility.

Prerequisites

Visual Studio 2015

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

1 of 10 02.09.2016 13:49

The Bank project. See Sample Project for Creating Unit Tests.

Prepare the walkthrough

Open Visual Studio.1.

On the File menu, point to New and then click Project.

The New Project dialog box appears.

2.

Under Installed Templates, click Visual C#.3.

In the list of application types, click Class Library.4.

In the Name box, type Bank and then click OK.

Note

If the name "Bank" is already used, choose another name for the project.

The new Bank project is created and displayed in Solution Explorer with the Class1.cs file open in the Code Editor.

Note

If the Class1.cs file is not open in the Code Editor, double-click the file Class1.cs in Solution Explorer to open it.

5.

Copy the source code from the Sample Project for Creating Unit Tests.6.

Replace the original contents of Class1.cs with the code from the Sample Project for Creating Unit Tests.7.

Save the file as BankAccount.cs8.

On the Build menu, click Build Solution.9.

You now have a project named Bank. It contains source code to test and tools to test it with. The namespace for Bank,

BankAccountNS, contains the public class BankAccount, whose methods you will test in the following procedures.

In this quick start, we focus on the Debit method.The Debit method is called when money is withdrawn an account and

contains the following code:

// method under test

public void Debit(double amount)

{

if(amount > m_balance)

C#

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

2 of 10 02.09.2016 13:49

Create a unit test project
Prerequisite: Follow the steps in the procedure, Prepare the walkthrough.

To create a unit test project

On the File menu, choose Add, and then choose New Project1.

In the New Project dialog box, expand Installed, expand Visual C#, and then choose Test.2.

From the list of templates, select Unit Test Project.3.

In the Name box, enter BankTest, and then choose OK.

The BankTests project is added to the the Bank solution.

4.

In the BankTests project, add a reference to the Bank solution.

In Solution Explorer, select References in the BankTests project and then choose Add Reference... from the

context menu.

5.

In the Reference Manager dialog box, expand Solution and then check the Bank item.6.

Create the test class
We need a test class for verifying the BankAccount class. We can use the UnitTest1.cs that was generated by the project

template, but we should give the file and class more descriptive names. We can do that in one step by renaming the file in

Solution Explorer.

Renaming a class file

In Solution Explorer, select the UnitTest1.cs file in the BankTests project. From the context menu, choose Rename, and

then rename the file to BankAccountTests.cs. Choose Yes on the dialog that asks if you want to rename all references in

the project to the code element 'UnitTest1'. This step changes the name of the class to BankAccountTest.

The BankAccountTests.cs file now contains the following code:

 {

throw new ArgumentOutOfRangeException("amount");

 }

if (amount < 0)

 {

throw new ArgumentOutOfRangeException("amount");

 }

 m_balance += amount;

}

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

3 of 10 02.09.2016 13:49

Add a using statement to the project under test

We can also add a using statement to the class to let us to call into the project under test without using fully qualified

names. At the top of the class file, add:

Test class requirements

The minimum requirements for a test class are the following:

The [TestClass] attribute is required in the Microsoft unit testing framework for managed code for any class

that contains unit test methods that you want to run in Test Explorer.

Each test method that you want Test Explorer to run must have the [TestMethod]attribute.

You can have other classes in a unit test project that do not have the [TestClass] attribute, and you can have other

methods in test classes that do not have the [TestMethod] attribute. You can use these other classes and methods in

your test methods.

Create the first test method
In this procedure, we will write unit test methods to verify the behavior of the Debit method of the BankAccount class.

The method is listed above.

By analyzing the method under test, we determine that there are at least three behaviors that need to be checked:

// unit test code

using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace BankTests

{

 [TestClass]

public class BankAccountTests

 {

 [TestMethod]

public void TestMethod1()

 {

 }

 }

}

using BankAccountNS;

C#

C#

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

4 of 10 02.09.2016 13:49

The method throws an ArgumentOutOfRangeException if the debit amount is greater than the balance.1.

It also throws ArgumentOutOfRangeException if the debit amount is less than zero.2.

If the checks in 1.) and 2.) are satisfied, the method subtracts the amount from the account balance.3.

In our first test, we verify that a valid amount (one that is less than the account balance and that is greater than zero)

withdraws the correct amount from the account.

To create a test method

Add a using BankAccountNS; statement to the BankAccountTests.cs file.1.

Add the following method to that BankAccountTests class:2.

The method is rather simple. We set up a new BankAccount object with a beginning balance and then withdraw a valid

amount. We use the Microsoft unit test framework for managed code AreEqual method to verify that the ending balance

is what we expect.

Test method requirements

A test method must meet the following requirements:

The method must be decorated with the [TestMethod] attribute.

The method must return void.

The method cannot have parameters.

// unit test code

[TestMethod]

public void Debit_WithValidAmount_UpdatesBalance()

{

// arrange

double beginningBalance = 11.99;

double debitAmount = 4.55;

double expected = 7.44;

 BankAccount account = new BankAccount("Mr. Bryan Walton", beginningBalance);

// act

 account.Debit(debitAmount);

// assert

double actual = account.Balance;

 Assert.AreEqual(expected, actual, 0.001, "Account not debited correctly");

}

C#

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

5 of 10 02.09.2016 13:49

Build and run the test

To build and run the test

On the Build menu, choose Build Solution.

If there are no errors, the UnitTestExplorer window appears with Debit_WithValidAmount_UpdatesBalance

listed in the Not Run Tests group. If Test Explorer does not appear after a successful build, choose Test on the

menu, then choose Windows, and then choose Test Explorer.

1.

Choose Run All to run the test. As the test is running the status bar at the top of the window is animated. At the

end of the test run, the bar turns green if all the test methods pass, or red if any of the tests fail.

2.

In this case, the test does fail. The test method is moved to the Failed Tests. group. Select the method in Test

Explorer to view the details at the bottom of the window.

3.

Fix your code and rerun your tests
Analyze the test results

The test result contains a message that describes the failure. For the AreEquals method, message displays you what was

expected (the (Expected<XXX>parameter) and what was actually received (the Actual<YYY> parameter). We were

expecting the balance to decline from the beginning balance, but instead it has increased by the amount of the

withdrawal.

A reexamination of the Debit code shows that the unit test has succeeded in finding a bug. The amount of the withdrawal

is added to the account balance when it should be subtracted.

Correct the bug

To correct the error, simply replace the line

with

Rerun the test

In Test Explorer, choose Run All to rerun the test. The red/green bar turns green, and the test is moved to the Passed

Tests group.

m_balance += amount;

m_balance ‐= amount;

C#

C#

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

6 of 10 02.09.2016 13:49

Use unit tests to improve your code
This section describes how an iterative process of analysis, unit test development, and refactoring can help you make your

production code more robust and effective.

Analyze the issues

After creating a test method to confirm that a valid amount is correctly deducted in the Debit method, we can turn to

remaining cases in our original analysis:

The method throws an ArgumentOutOfRangeException if the debit amount is greater than the balance.1.

It also throws ArgumentOutOfRangeException if the debit amount is less than zero.2.

Create the test methods

A first attempt at creating a test method to address these issues seems promising:

We use the ExpectedExceptionAttribute attribute to assert that the right exception has been thrown. The attribute causes

the test to fail unless an ArgumentOutOfRangeException is thrown. Running the test with both positive and negative

debitAmount values and then temporarily modifying the method under test to throw a generic ApplicationException

when the amount is less than zero demonstrates that test behaves correctly. To test the case when the amount withdrawn

is greater than the balance, all we need to do is:

Create a new test method named Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange.1.

Copy the method body from Debit_WhenAmountIsLessThanZero_ShouldThrowArgumentOutOfRange to the

new method.

2.

Set the debitAmount to a number greater than the balance.3.

//unit test method

[TestMethod]

[ExpectedException(typeof(ArgumentOutOfRangeException))]

public void Debit_WhenAmountIsLessThanZero_ShouldThrowArgumentOutOfRange()

{

// arrange

double beginningBalance = 11.99;

double debitAmount = ‐100.00;

 BankAccount account = new BankAccount("Mr. Bryan Walton", beginningBalance);

// act

 account.Debit(debitAmount);

// assert is handled by ExpectedException

}

C#

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

7 of 10 02.09.2016 13:49

Run the tests

Running the two methods with different values for debitAmount demonstrates that the tests adequately handle our

remaining cases. Running all three tests confirm that all cases in our original analysis are correctly covered.

Continue the analysis

However, the last two test methods are also somewhat troubling. We cannot be certain which condition in the code under

test throws when either test runs. Some way of differentiating the two conditions would be helpful. As we think about the

problem more, it becomes apparent that knowing which condition was violated would increase our confidence in the

tests. This information would also very likely be helpful to the production mechanism that handles the exception when it

is thrown by the method under test. Generating more information when the method throws would assist all concerned,

but the ExpectedException attribute cannot supply this information..

Looking at the method under test again, we see both conditional statements use an ArgumentOutOfRangeException

constructor that takes name of the argument as a parameter:

From a search of the MSDN Library, we discover that a constructor exists that reports far richer information.

ArgumentOutOfRangeException(String, Object, String) includes the name of the argument, the argument value,

and a user-defined message. We can refactor the method under test to use this constructor. Even better, we can use

publicly available type members to specify the errors.

Refactor the code under test

We first define two constants for the error messages at class scope:

We then modify the two conditional statements in the Debit method:

throw new ArgumentOutOfRangeException("amount");

// class under test

public const string DebitAmountExceedsBalanceMessage = "Debit amount exceeds balance";

public const string DebitAmountLessThanZeroMessage = "Debit amount less than zero";

// method under test

// ...

if (amount > m_balance)

 {

throw new ArgumentOutOfRangeException("amount", amount,

DebitAmountExceedsBalanceMessage);

 }

if (amount < 0)

 {

throw new ArgumentOutOfRangeException("amount", amount,

DebitAmountLessThanZeroMessage);

C#

C#

C#

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

8 of 10 02.09.2016 13:49

Refactor the test methods

In our test method, we first remove the ExpectedException attribute. In its place, we catch the thrown exception and

verify that it was thrown in the correct condition statement. However, we must now decide between two options to verify

our remaining conditions. For example in the

Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange method, we can take one of the

following actions:

Assert that the ActualValue property of the exception (the second parameter of the

ArgumentOutOfRangeException constructor) is greater than the beginning balance. This option requires that we

test the ActualValue property of the exception against the beginningBalance variable of the test method, and

also requires then verify that the ActualValue is greater than zero.

Assert that the message (the third parameter of the constructor) includes the

DebitAmountExceedsBalanceMessage defined in the BankAccount class.

The StringAssert.Contains method in the Microsoft unit test framework enables us to verify the second option without the

calculations that are required of the first option.

A second attempt at revising Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange might look

like:

Retest, rewrite, and reanalyze

When we retest the test methods with different values, we encounter the following facts:

 }

// ...

[TestMethod]

public void Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange()

{

// arrange

double beginningBalance = 11.99;

double debitAmount = 20.0;

 BankAccount account = new BankAccount("Mr. Bryan Walton", beginningBalance);

// act

try

 {

 account.Debit(debitAmount);

 }

catch (ArgumentOutOfRangeException e)

 {

// assert

 StringAssert.Contains(e.Message, BankAccount. DebitAmountExceedsBalanceMessage);

 }

}

C#

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

9 of 10 02.09.2016 13:49

If we catch the correct error by using an assert where debitAmount that is greater than the balance, the Contains

assert passes, the exception is ignored, and so the test method passes. This is the behavior we want.

1.

If we use a debitAmount that is less than 0, the assert fails because the wrong error message is returned. The assert

also fails if we introduce a temporary ArgumentOutOfRange exception at another point in the method under test

code path. This too is good.

2.

If the debitAmount value is valid (i.e., less than the balance but greater than zero, no exception is caught, so the

assert is never caught. The test method passes. This is not good, because we want the test method to fail if no

exception is thrown.

3.

The third fact is a bug in our test method. To attempt to resolve the issue, we add a Fail assert at the end of the test

method to handle the case where no exception is thrown.

But retesting shows that the test now fails if the correct exception is caught. The catch statement resets the exception and

the method continues to execute, failing at the new assert. To resolve the new problem, we add a return statement after

the StringAssert. Retesting confirms that we have fixed our problems. Our final version of the

Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange looks like the following:

In this final section, the work that we did improving our test code led to more robust and informative test methods. But

more importantly, the extra analysis also led to better code in our project under test.

© 2016 Microsoft

[TestMethod]

public void Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange()

{

// arrange

double beginningBalance = 11.99;

double debitAmount = 20.0;

 BankAccount account = new BankAccount("Mr. Bryan Walton", beginningBalance);

// act

try

 {

 account.Debit(debitAmount);

 }

catch (ArgumentOutOfRangeException e)

 {

// assert

 StringAssert.Contains(e.Message, BankAccount. DebitAmountExceedsBalanceMessage);

return;

 }

 Assert.Fail("No exception was thrown.");

}

C#

Walkthrough: Creating and Running Unit Tests for Managed Code https://msdn.microsoft.com/en-us/library/ms182532(d=printer).aspx

10 of 10 02.09.2016 13:49

Quick Start: Test Driven Development with
Test Explorer

We recommend that you create unit tests to help keep your code working correctly through many incremental steps of

development. There are several frameworks that you can use to write unit tests, including some developed by third parties.

Some test frameworks are specialized to testing in different languages or platforms. Test Explorer provides a single interface

for unit tests in any of these frameworks. Adapters are available for the most commonly-used frameworks, and you can write

your own adapters for other frameworks.

Test Explorer supersedes the unit test windows found in earlier editions of Visual Studio. Its benefits include:

Run .NET, unmanaged, database and other kinds of tests using a single interface.

Use the unit test framework of your choice, such as NUnit or MSTest frameworks.

See in one window all the information that you need.

Using Test Explorer

Visual Studio 2015

Quick Start: Test Driven Development with Test Explorer https://msdn.microsoft.com/en-us/library/hh212233(d=printer).aspx

1 of 9 02.09.2016 13:46

To Run Unit Tests by using Test Explorer

Create unit tests that use the test frameworks of your choice.

For example, to create a test that uses the MSTest Framework:

Create a test project.

In the New Project dialog box, expand Visual Basic, Visual C#, or Visual C++, and then choose Test.

Select Unit Test Project.

a.

Write each unit test as a method. Prefix each test method with the [TestMethod] attribute.b.

1.

If individual tests have no dependencies that prevent them from being run in any order, turn on parallel test

execution with the toggle button on the toolbar. This can noticeably reduce the time taken to run all the tests.

2.

On the menu bar, choose Test, Run Unit Tests, All Tests.

The solution builds and the tests run.

Test Explorer opens and displays a summary of the results.

3.

Quick Start: Test Driven Development with Test Explorer https://msdn.microsoft.com/en-us/library/hh212233(d=printer).aspx

2 of 9 02.09.2016 13:46

To see a full list of tests: Choose Show All in any category.

To see the details of a test result: Select the test in Test Explorer to view details such as exception messages in the

details pane.

To navigate to the code of a test: Double-click the test in Test Explorer, or choose Open Test on the shortcut menu.

To debug a test: Open the shortcut menu for one or more tests, and then choose Debug Selected Tests.

Important

The results that are displayed are for the most recent run. The colored results bar shows only the results for the tests

that ran. For example, if you run several tests and some of them fail, and then run only the successful tests, then the

results bar will show all green.

Note

If no test appears, make sure that you have installed an adapter to connect Test Explorer to the test framework that

you are using. For more information, see Using Different Test Frameworks with Test Explorer.

Walkthrough: Using Unit Tests to Develop a Method
This walkthrough demonstrates how to develop a tested method in C# using the Microsoft Unit Test framework. You can

easily adapt it for other languages, and to use other test frameworks such as NUnit. For more information, see Using

Different Test Frameworks.

Creating the Test and Method

Create a Visual C# Class Library project. This project will contain the code that we want to deliver. In this example, it

is named MyMath.

1.

Create a Test project.

In the New Project dialog, choose Visual C#, Test and then choose Unit Test Project.

2.

Quick Start: Test Driven Development with Test Explorer https://msdn.microsoft.com/en-us/library/hh212233(d=printer).aspx

3 of 9 02.09.2016 13:46

Write a basic test method. Verify the result obtained for a specific input:3.

Generate the method from the test.

Place the cursor on Rooter, and then on the shortcut menu choose Generate, New Type.a.

In the Generate New Type dialog box, set Project to the class library project. In this example, it is

MyMath.

b.

Place the cursor on SquareRoot, and then on the shortcut menu choose Generate, Method Stub.c.

4.

Run the unit test.

On the Test menu, choose Run Unit Tests, All Tests.

The solution builds and runs.

Test Explorer opens and displays the results.

The test appears under Failed Tests.

a.

5.

[TestMethod]

public void BasicRooterTest()

{

// Create an instance to test:

 Rooter rooter = new Rooter();

// Define a test input and output value:

double expectedResult = 2.0;

double input = expectedResult * expectedResult;

// Run the method under test:

double actualResult = rooter.SquareRoot(input);

// Verify the result:

 Assert.AreEqual(expectedResult, actualResult,

 delta: expectedResult / 100);

}

C#

Quick Start: Test Driven Development with Test Explorer https://msdn.microsoft.com/en-us/library/hh212233(d=printer).aspx

4 of 9 02.09.2016 13:46

Select the name of the test.

The details of the test appear in the lower part of Test Explorer.

6.

Select the items under Stack Trace to see where the test failed.7.

At this point, you have created a test and a stub that you will modify so that the test passes.

After every change, make all the tests pass

In MyMath\Rooter.cs, improve the code of SquareRoot:1.

In Test Explorer, choose Run All.

The code builds and the test runs.

The test passes.

2.

public double SquareRoot(double input)

 {

return input / 2;

 }

C#

Quick Start: Test Driven Development with Test Explorer https://msdn.microsoft.com/en-us/library/hh212233(d=printer).aspx

5 of 9 02.09.2016 13:46

Add tests to extend the range of inputs

To improve your confidence that your code works in all cases, add tests that try a broader range of input values.

Tip

Avoid altering existing tests that pass. Instead, add new tests. Change existing tests only when the user

requirements change. This policy helps ensure that you don’t lose existing functionality as you work to extend

the code.

In your test class, add the following test, which tries a range of input values:

1.

C#

Quick Start: Test Driven Development with Test Explorer https://msdn.microsoft.com/en-us/library/hh212233(d=printer).aspx

6 of 9 02.09.2016 13:46

In Test Explorer, choose Run All.

The new test fails, although the first test still passes.

To find the point of failure, select the failing test and then in the lower part of Test Explorer, select the top item of

the Stack Trace.

2.

Inspect the method under test to see what might be wrong. In the MyMath.Rooter class, rewrite the code:3.

In Test Explorer, choose Run All.

Both tests now pass.

4.

Add tests for exceptional cases

[TestMethod]

public void RooterValueRange()

{

// Create an instance to test:

 Rooter rooter = new Rooter();

// Try a range of values:

for (double expectedResult = 1e‐8;

 expectedResult < 1e+8;

 expectedResult = expectedResult * 3.2)

 {

 RooterOneValue(rooter, expectedResult);

 }

}

private void RooterOneValue(Rooter rooter, double expectedResult)

{

double input = expectedResult * expectedResult;

double actualResult = rooter.SquareRoot(input);

 Assert.AreEqual(expectedResult, actualResult,

 delta: expectedResult / 1000);

}

public double SquareRoot(double input)

{

 double result = input;

 double previousResult = ‐input;

 while (Math.Abs(previousResult ‐ result) > result / 1000)

 {

 previousResult = result;

 result = result ‐ (result * result ‐ input) / (2 * result);

 }

 return result;

}

Quick Start: Test Driven Development with Test Explorer https://msdn.microsoft.com/en-us/library/hh212233(d=printer).aspx

7 of 9 02.09.2016 13:46

Add a test for negative inputs:1.

In Test Explorer, choose Run All.

The method under test loops, and must be canceled manually.

2.

Choose Cancel.

The test stops after 10 seconds.

3.

Fix the method code:4.

In Test Explorer, choose Run All.

All the tests pass.

5.

Refactor without changing tests

Simplify the code, but do not change the tests.

Tip

1.

[TestMethod]

public void RooterTestNegativeInputx()

 {

 Rooter rooter = new Rooter();

try

 {

 rooter.SquareRoot(‐10);

 }

catch (ArgumentOutOfRangeException e)

 {

return;

 }

 Assert.Fail();

 }

public double SquareRoot(double input)

{

if (input <= 0.0)

 {

throw new ArgumentOutOfRangeException();

 }

...

C#

C#

Quick Start: Test Driven Development with Test Explorer https://msdn.microsoft.com/en-us/library/hh212233(d=printer).aspx

8 of 9 02.09.2016 13:46

A refactoring is a change that is intended to make the code perform better or to make the code easier to

understand. It is not intended to alter the behavior of the code, and therefore the tests are not changed.

We recommend that you perform refactoring steps separately from steps that extend functionality. Keeping the

tests unchanged gives you confidence that you have not accidentally introduced bugs while refactoring.

Choose Run All.

All the tests still pass.

2.

© 2016 Microsoft

public class Rooter

{

public double SquareRoot(double input)

 {

if (input <= 0.0)

 {

throw new ArgumentOutOfRangeException();

 }

double result = input;

double previousResult = ‐input;

while (Math.Abs(previousResult ‐ result) > result / 1000)

 {

 previousResult = result;

 result = (result + input / result) / 2;

//was: result = result ‐ (result * result ‐ input) / (2*result);

 }

return result;

 }

}

C#

Quick Start: Test Driven Development with Test Explorer https://msdn.microsoft.com/en-us/library/hh212233(d=printer).aspx

9 of 9 02.09.2016 13:46

Isolating Code Under Test with Microsoft
Fakes

Microsoft Fakes help you isolate the code you are testing by replacing other parts of the application with stubs or shims.

These are small pieces of code that are under the control of your tests. By isolating your code for testing, you know that if

the test fails, the cause is there and not somewhere else. Stubs and shims also let you test your code even if other parts of

your application are not working yet.

Fakes come in two flavors:

A stub replaces a class with a small substitute that implements the same interface. To use stubs, you have to design

your application so that each component depends only on interfaces, and not on other components. (By

"component" we mean a class or group of classes that are designed and updated together and typically contained in

an assembly.)

A shim modifies the compiled code of your application at run time so that instead of making a specified method call,

it runs the shim code that your test provides. Shims can be used to replace calls to assemblies that you cannot

modify, such .NET assemblies.

Requirements

Visual Studio Enterprise

Choosing between stub and shim types
Typically, you would consider a Visual Studio project to be a component, because you develop and update those classes

at the same time. You would consider using stubs and shims for calls that the project makes to other projects in your

solution, or to other assemblies that the project references.

Visual Studio 2015

Isolating Code Under Test with Microsoft Fakes https://msdn.microsoft.com/en-us/library/hh549175(d=printer).aspx

1 of 5 02.09.2016 13:51

As a general guide, use stubs for calls within your Visual Studio solution, and shims for calls to other referenced

assemblies. This is because within your own solution it is good practice to decouple the components by defining

interfaces in the way that stubbing requires. But external assemblies such as System.dll typically are not provided with

separate interface definitions, so you must use shims instead.

Other considerations are:

Performance. Shims run slower because they rewrite your code at run time. Stubs do not have this performance

overhead and are as fast as virtual methods can go.

Static methods, sealed types. You can only use stubs to implement interfaces. Therefore, stub types cannot be used for

static methods, non-virtual methods, sealed virtual methods, methods in sealed types, and so on.

Internal types. Both stubs and shims can be used with internal types that are made accessible by using the assembly

attribute InternalsVisibleToAttribute.

Private methods. Shims can replace calls to private methods if all the types on the method signature are visible. Stubs

can only replace visible methods.

Interfaces and abstract methods. Stubs provide implementations of interfaces and abstract methods that can be used

in testing. Shims can’t instrument interfaces and abstract methods, because they don’t have method bodies.

In general, we recommend that you use stub types to isolate from dependencies within your codebase. You can do this by

hiding the components behind interfaces. Shim types can be used to isolate from third-party components that do not

provide a testable API.

Getting started with stubs
For a more detailed description, see Using stubs to isolate parts of your application from each other for unit testing.

Inject interfaces

To use stubs, you have to write the code you want to test in such a way that it does not explicitly mention classes in

another component of your application. By "component" we mean a class or classes that are developed and

updated together, and typically contained in one Visual Studio project. Variables and parameters should be

declared by using interfaces and instances of other components should be passed in or created by using a factory.

For example, if StockFeed is a class in another component of the application, then this would be considered bad:

return (new StockFeed()).GetSharePrice("COOO"); // Bad

Instead, define an interface that can be implemented by the other component, and which can also be implemented

by a stub for test purposes:

1.

Add Fakes Assembly2.

Public Function GetContosoPrice(feed As IStockFeed) As Integer

Return feed.GetSharePrice("COOO")

End Function

VB

Isolating Code Under Test with Microsoft Fakes https://msdn.microsoft.com/en-us/library/hh549175(d=printer).aspx

2 of 5 02.09.2016 13:51

In Solution Explorer, expand the test project’s reference list. If you are working in Visual Basic, you must

choose Show All Files in order to see the reference list.

a.

Select the reference to the assembly in which the interface (for example IStockFeed) is defined. On the

shortcut menu of this reference, choose Add Fakes Assembly.

b.

Rebuild the solution.c.

In your tests, construct instances of the stub and provide code for its methods:

The special piece of magic here is the class StubIStockFeed. For every interface in the referenced assembly, the

Microsoft Fakes mechanism generates a stub class. The name of the stub class is the derived from the name of the

interface, with "Fakes.Stub" as a prefix, and the parameter type names appended.

Stubs are also generated for the getters and setters of properties, for events, and for generic methods. For more

information, see Using stubs to isolate parts of your application from each other for unit testing.

3.

Getting started with shims
(For a more detailed description, see Using shims to isolate your application from other assemblies for unit testing.)

Suppose your component contains calls to DateTime.Now:

<TestClass()> _

Class TestStockAnalyzer

 <TestMethod()> _

Public Sub TestContosoStockPrice()

' Arrange:

' Create the fake stockFeed:

Dim stockFeed As New StockAnalysis.Fakes.StubIStockFeed

With stockFeed

 .GetSharePriceString = Function(company)

Return 1234

End Function

End With

' In the completed application, stockFeed would be a real one:

Dim componentUnderTest As New StockAnalyzer(stockFeed)

' Act:

Dim actualValue As Integer = componentUnderTest.GetContosoPrice

' Assert:

 Assert.AreEqual(1234, actualValue)

End Sub

End Class

// Code under test:

VB

C#

Isolating Code Under Test with Microsoft Fakes https://msdn.microsoft.com/en-us/library/hh549175(d=printer).aspx

3 of 5 02.09.2016 13:51

During testing, you would like to shim the Now property, because the real version inconveniently returns a different value

at every call.

To use shims, you don’t have to modify the application code or write it a particular way.

Add Fakes Assembly

In Solution Explorer, open your unit test project’s references and select the reference to the assembly that contains

the method you want to fake. In this example, the DateTime class is in System.dll. To see the references in a Visual

Basic project, choose Show All Files.

Choose Add Fakes Assembly.

1.

Insert a shim in a ShimsContext

Shim class names are made up by prefixing Fakes.Shim to the original type name. Parameter names are

appended to the method name. (You don’t have to add any assembly reference to System.Fakes.)

2.

The previous example uses a shim for a static method. To use a shim for an instance method, write AllInstances

public int GetTheCurrentYear()

 {

return DateTime.Now.Year;

 }

<TestClass()> _

Public Class TestClass1

 <TestMethod()> _

Public Sub TestCurrentYear()

Using s = Microsoft.QualityTools.Testing.Fakes.ShimsContext.Create()

Dim fixedYear As Integer = 2000

' Arrange:

' Detour DateTime.Now to return a fixed date:

 System.Fakes.ShimDateTime.NowGet = _

Function() As DateTime

Return New DateTime(fixedYear, 1, 1)

End Function

' Instantiate the component under test:

Dim componentUnderTest = New MyComponent()

' Act:

Dim year As Integer = componentUnderTest.GetTheCurrentYear

' Assert:

' This will always be true if the component is working:

 Assert.AreEqual(fixedYear, year)

End Using

End Sub

End Class

VB

Isolating Code Under Test with Microsoft Fakes https://msdn.microsoft.com/en-us/library/hh549175(d=printer).aspx

4 of 5 02.09.2016 13:51

between the type name and the method name:

(There is no ‘System.IO.Fakes’ assembly to reference. The namespace is generated by the shim creation process. But you

can use ‘using’ or ‘Import’ in the usual way.)

You can also create shims for specific instances, for constructors, and for properties. For more information, see Using

shims to isolate your application from other assemblies for unit testing.

In this section
Using stubs to isolate parts of your application from each other for unit testing

Using shims to isolate your application from other assemblies for unit testing

Code generation, compilation, and naming conventions in Microsoft Fakes

© 2016 Microsoft

System.IO.Fakes.ShimFile.AllInstances.ReadToEnd = ...

Isolating Code Under Test with Microsoft Fakes https://msdn.microsoft.com/en-us/library/hh549175(d=printer).aspx

5 of 5 02.09.2016 13:51

How To: Create a Data-Driven Unit Test

Using the Microsoft unit test framework for managed code, you can set up a unit test method to retrieve values used in the

test method from a data source. The method is run successively for each row in the data source, which makes it easy to test a

variety of input by using a single method.

This topic contains the following sections:

The method under test

Creating a data source

Adding a TestContext to the test class

Writing the test method

Specifying the DataSourceAttribute

Using TestContext.DataRow to access the data

Running the test and viewing results

Creating a data-driven unit test involves the following steps:

Create a data source that contains the values that you use in the test method. The data source can be any type that is

registered on the machine that runs the test.

1.

Add a private TestContext field and a public TestContext property to the test class.2.

Create a unit test method and add a DataSourceAttribute attribute to it.3.

Use the DataRow indexer property to retrieve the values that you use in a test.4.

The method under test
As an example, let's assume that we have created:

A solution called MyBank that accepts and processes transactions for different types of accounts.1.

A project in MyBank called BankDb that manages the transactions for accounts.2.

A class called Maths in the DbBank project that performs the mathematical functions to ensure that any transaction

is advantageous to the bank.

3.

Visual Studio 2015

How To: Create a Data-Driven Unit Test https://msdn.microsoft.com/en-us/library/ms182527(d=printer).aspx

1 of 5 02.09.2016 13:51

A unit test project called BankDbTests to test the behavior of the BankDb component.4.

A unit test class called MathsTests to verify the behavior of the Maths class.5.

We will test a method in Maths that adds two integers using a loop:

Creating a data source
To test the AddIntegers method, we create a data source that specifies a range of values for the parameters and the sum

that you expect to be returned. In our example, we create a Sql Compact database named MathsData and a table named

AddIntegersData that contains the following column names and values

FirstNumber SecondNumber Sum

0 1 1

1 1 2

2 -3 -1

Adding a TestContext to the test class
The unit test framework creates a TestContext object to store the data source information for a data-driven test. The

framework then sets this object as the value of the TestContext property that we create.

public int AddIntegers(int first, int second)

{

 int sum = first;

 for(int i = 0; i < second; i++)

 {

 sum += 1;

 }

 return sum;

}

private TestContext testContextInstance;

public TestContext TestContext

{

How To: Create a Data-Driven Unit Test https://msdn.microsoft.com/en-us/library/ms182527(d=printer).aspx

2 of 5 02.09.2016 13:51

In your test method, you access the data through the DataRow indexer property of the TestContext.

Writing the test method
The test method for AddIntegers is fairly simple. For each row in the data source, we call AddIntegers with the

FirstNumber and SecondNumber column values as parameters, and we verify the return value against Sum column

value:

Note that the Assert method includes a message that displays the x and y values of a failed iteration. By default, the

asserted values, expected and actual, are already included in the details of a failed test.

Specifying the DataSourceAttribute

The DataSource attribute specifies the connection string for the data source and the name of the table that you use in

the test method. The exact information in the connection string differs, depending on what kind of data source you are

using. In this example, we used a SqlServerCe database.

 get { return testContextInstance; }

 set { testContextInstance = value; }

}

[DataSource(@"Provider=Microsoft.SqlServerCe.Client.4.0; Data Source=C:\Data

\MathsData.sdf;", "Numbers")]

[TestMethod()]

public void AddIntegers_FromDataSourceTest()

{

 var target = new Maths();

 // Access the data

 int x = Convert.ToInt32(TestContext.DataRow["FirstNumber"]);

 int y = Convert.ToInt32(TestContext.DataRow["SecondNumber"]);

 int expected = Convert.ToInt32(TestContext.DataRow["Sum"]);

 int actual = target.IntegerMethod(x, y);

 Assert.AreEqual(expected, actual,

 "x:<{0}> y:<{1}>",

 new object[] {x, y});

}

[DataSource(@"Provider=Microsoft.SqlServerCe.Client.4.0;Data Source=C:\Data

How To: Create a Data-Driven Unit Test https://msdn.microsoft.com/en-us/library/ms182527(d=printer).aspx

3 of 5 02.09.2016 13:51

The DataSource attribute has three constructors.

A constructor with one parameter uses connection information that is stored in the app.config file for the solution. The

dataSourceSettingsName is the name of the Xml element in the config file that specifies the connection information.

Using an app.config file allows you to change the location of the data source without making changes to the unit test

itself. For information about how to create and use an app.config file, see Walkthrough: Using a Configuration File to

Define a Data Source

The DataSource constructor with two parameters specifies the connection string for the data source and the name of

the table that contains the data for the test method.

The connection strings depend on the type of the type of data source, but it should contain a Provider element that

specifies the invariant name of the data provider.

Using TestContext.DataRow to access the data

To access the data in the AddIntegersData table, use the TestContext.DataRow indexer. DataRow is a DataRow

object, so we retrieve column values by index or column names. Because the values are returned as objects, we need to

convert them to the appropriate type:

\MathsData.sdf", "AddIntegersData")]

[DataSource(dataSourceSettingName)]

[DataSource(connectionString, tableName)]

[DataSource(

 dataProvider,

 connectionString,

 tableName,

 dataAccessMethod

)]

int x = Convert.ToInt32(TestContext.DataRow["FirstNumber"]);

How To: Create a Data-Driven Unit Test https://msdn.microsoft.com/en-us/library/ms182527(d=printer).aspx

4 of 5 02.09.2016 13:51

Running the test and viewing results
When you have finished writing a test method, build the test project. The test method appears in the Test Explorer

window in the Not Run Tests group. As you run, write, and rerun your tests, Test Explorer displays the results in groups

of Failed Tests, Passed Tests, and Not Run Tests. You can choose Run All to run all your tests, or choose Run... to

choose a subset of tests to run.

The test results bar at the top of the Explorer is animated as your test runs. At the end of the test run, the bar will be green

if all of the tests have passed or red if any of the tests have failed. A summary of the test run appears in the details pane at

the bottom of the Test Explorer window. Select a test to view the details of that test in the bottom pane.

If you ran the AddIntegers_FromDataSourceTest method in our example, the results bar turns red and the test method

is moved to the Failed Tests A data-driven test fails if any of the iterated methods from the data source fails. When you

choose a failed data-driven test in the Test Explorer window, the details pane displays the results of each iteration that is

identified by the data row index. In our example, it appears that the AddIntegers algorithm does not handle negative

values correctly.

When the method under test is corrected and the test rerun, the results bar turns green and the test method is moved to

the Passed Test group.

See Also
Microsoft.VisualStudio.TestTools.UnitTesting.DataSourceAttribute

Microsoft.VisualStudio.TestTools.UnitTesting.TestContext

TestContext.DataRow

Microsoft.VisualStudio.TestTools.UnitTesting.Assert

How to: Create and Run a Unit Test

Unit Test Your Code

Run unit tests with Test Explorer

Writing Unit Tests for the .NET Framework with the Microsoft Unit Test Framework for Managed Code

© 2016 Microsoft

How To: Create a Data-Driven Unit Test https://msdn.microsoft.com/en-us/library/ms182527(d=printer).aspx

5 of 5 02.09.2016 13:51

Use UI Automation To Test Your Code

Automated tests that drive your application through its user interface (UI) are known as coded UI tests (CUITs). These tests

include functional testing of the UI controls. They let you verify that the whole application, including its user interface, is

functioning correctly. Coded UI Tests are particularly useful where there is validation or other logic in the user interface, for

example in a web page. They are also frequently used to automate an existing manual test.

As shown in the following illustration, a typical development experience might be one where, initially, you simply build your

application (F5) and click through the UI controls to verify that things are working correctly. You then might decide to create

a coded test so that you don’t need to continue to test the application manually. Depending on the particular functionality

being tested in your application, you can write code for either a functional test, or for an integration test that might or

might not include testing at the UI level. If you simply want to directly access some business logic, you might code a unit

test. However, under certain circumstances, it can be beneficial to include testing of the various UI controls in your

application. A coded UI test can automate the initial (F5) scenario, verifying that code churn does not impact the

functionality of your application.

Creating a coded UI test is easy. You simply perform the test manually while the CUIT Test Builder runs in the background.

You can also specify what values should appear in specific fields. The CUIT Test Builder records your actions and generates

code from them. After the test is created, you can edit it in a specialized editor that lets you modify the sequence of actions.

Alternatively, if you have a test case that was recorded in Microsoft Test Manager, you can generate code from that. For

more information, see Record and play back manual tests.

The specialized CUIT Test Builder and editor make it easy to create and edit coded UI tests even if your main skills are

concentrated in testing rather than coding. But if you are a developer and you want to extend the test in a more advanced

way, the code is structured so that it is straightforward to copy and adapt. For example, you might record a test to buy

something at a website, and then edit the generated code to add a loop that buys many items.

Visual Studio 2015

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

1 of 17 02.09.2016 13:40

Requirements

Visual Studio Enterprise

For more information about which platforms and configurations are supported by coded UI tests, see Supported

Configurations and Platforms for Coded UI Tests and Action Recordings.

In this topic

Creating Coded UI Tests

Main procedure

Starting and stopping the application

Validating the properties of UI Controls

Customizing your coded UI test

The Generated Code

Coding UI control actions and properties

Debugging

What’s Next

Creating Coded UI Tests

Create a Coded UI Test project.

Coded UI tests must be contained in a coded UI test project. If you don’t already have a coded UI test project,

create one. In Solution Explorer, on the shortcut menu of the solution, choose Add, New Project and then select

either Visual Basic or Visual C#. Next, choose Test, Coded UI Test.

I don't see the Coded UI Test project templates.

You might be using a version of Visual Studio that does not support coded UI tests. To create coded UI

tests, you must use Visual Studio Enterprise.

1.

Add a coded UI test file.

If you just created a Coded UI project, the first CUIT file is added automatically. To add another test file, open the

shortcut menu on the coded UI test project, point to Add, and then choose Coded UI Test.

2.

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

2 of 17 02.09.2016 13:40

In the Generate Code for Coded UI Test dialog box, choose Record actions, edit UI map or add assertions.

The Coded UI Test Builder appears and Visual Studio is minimized.

Record a sequence of actions.3.

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

3 of 17 02.09.2016 13:40

To start recording, choose the Record icon. Perform the actions that you want to test in your application,

including starting the application if that is required.

For example, if you are testing a web application, you might start a browser, navigate to the web site, and log in to

the application.

To pause recording, for example if you have to deal with incoming mail, choose Pause.

Warning

All actions performed on the desktop will be recorded. Pause the recording if you are performing actions that

may lead to sensitive data being included in the recording.

To delete actions that you recorded by mistake, choose Edit Actions.

To generate code that will replicate your actions, choose the Generate Code icon and type a name and

description for your coded UI test method.

Verify the values in UI fields such as text boxes.

Choose Add Assertions in the Coded UI Test Builder, and then choose a UI control in your running application. In

the list of properties that appears, select a property, for example, Text in a text box. On the shortcut menu, choose

Add Assertion. In the dialog box, select the comparison operator, the comparison value, and the error message.

Close the assertion window and choose Generate Code.

Tip

Alternate between recording actions and verifying values. Generate code at the end of each sequence of actions

or verifications. If you want, you will be able to insert new actions and verifications later.

4.

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

4 of 17 02.09.2016 13:40

For more details, see Validating Properties of Controls.

View the generated test code.

To view the generated code, close the UI Test Builder window. In the code, you can see the names that you gave to

each step. The code is in the CUIT file that you created:

5.

Add more actions and assertions.

Place the cursor at the appropriate point in the test method and then, on the shortcut menu, choose Generate

Code for Coded UI Test. New code will be inserted at that point.

6.

Edit the detail of the test actions and the assertions.

Open UIMap.uitest. This file opens in the Coded UI Test Editor, where you can edit any sequence of actions that

you recorded as well as edit your assertions.

For more information, see Editing Coded UI Tests Using the Coded UI Test Editor.

7.

Run the test.8.

[CodedUITest]

public class CodedUITest1

{ ...

 [TestMethod]

public void CodedUITestMethod1()

 {

this.UIMap.AddTwoNumbers();

this.UIMap.VerifyResultValue();

// To generate more code for this test, select

// "Generate Code" from the shortcut menu.

 }

}

C#

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

5 of 17 02.09.2016 13:40

Use Test Explorer, or open the shortcut menu in the test method, and then choose Run Tests. For more

information about how to run tests, see Run unit tests with Test Explorer and Additional options for running coded

UI tests in the What’s next? section at the end of this topic.

The remaining sections in this topic provide more detail about the steps in this procedure.

For a more detailed example, see Walkthrough: Creating, Editing and Maintaining a Coded UI Test. In the walkthrough,

you will create a simple Windows Presentation Foundation (WPF) application to demonstrate how to create, edit, and

maintain a coded UI test. The walkthrough provides solutions for correcting tests that have been broken by various

timing issues and control refactoring.

Starting and stopping the application under test

I don’t want to start and stop my application, browser, or database separately for each test. How do I avoid that?

 If you do not want to record the actions to start your application under test, you must start your application

before you choose the Record icon.

At the end of a test, the process in which the test runs is terminated. If you started your application in the test,

the application usually closes. If you do not want the test to close your application when it exits, you must add a

.runsettings file to your solution and use the KeepExecutorAliveAfterLegacyRun option. For more

information, see Configure unit tests by using a .runsettings file.

 You can add a test initialize method, identified by a [TestInitialize] attribute, which runs code at the start of

each test method. For example, you could start the application from the TestInitialize method.

 You can add a test cleanup method, identified by a [TestCleanup] attribute, that runs code at the end of each

test method. For example, the method to close the application could be called from the TestCleanup method.

Validating the properties of UI controls

You can use the Coded UI Test Builder to add a user interface (UI) control to the

T:Microsoft.VisualStudio.TestTools.UITest.Common.UIMap.UIMap for your test, or to generate code for a validation

method that uses an assertion for a UI control.

To generate assertions for your UI controls, choose the Add Assertions tool in the Coded UI Test Builder and drag it to

the control on the application under test that you want to verify is correct. When the box outlines your control, release

the mouse. The control class code is immediately created in the UIMap.Designer.cs file.

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

6 of 17 02.09.2016 13:40

The properties for this control are now listed in the Add Assertions dialog box.

Another way of navigating to a particular control is to choose the arrow (<<) to expand the view for the UI Control

Map. To find a parent, sibling, or child control, you can click anywhere on the map and use the arrow keys to move

around the tree.

I don’t see any properties when I select a control in my application, or I don’t see the control in the UI Control

Map.

In the application code, the control that you want to verify must have a unique ID, such as an HTML ID attribute,

or a WPF UId. You might need to update the application code to add these IDs.

Next, open the shortcut menu on the property for the UI control that you want to verify, and then point to Add

Assertion. In the Add Assertion dialog box, select the Comparator for your assertion, for example AreEqual, and type

the value for your assertion in Comparison Value.

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

7 of 17 02.09.2016 13:40

When you have added all your assertions for your test, choose OK.

To generate the code for your assertions and add the control to the UI map, choose the Generate Code icon. Type a

name for your coded UI test method and a description for the method, which will be added as comments for the

method. Choose Add and Generate. Next, choose the Close icon to close the Coded UI Test Builder. This generates

code similar to the following code. For example, if the name you entered is AssertForAddTwoNumbers, the code will

look like this example:

Adds a call to the assert method AssertForAddTwoNumbers to the test method in your coded UI test file:

You can edit this file to change the order of the steps and assertions, or to create new test methods. To add

more code, place the cursor on the test method and on the shortcut menu choose Generate Code for Coded

UI Test.

Adds a method called AssertForAddTwoNumbers to your UI map (UIMap.uitest). This file opens in the Coded UI

Test Editor, where you can edit the assertions.

[TestMethod]

public void CodedUITestMethod1()

{

 this.UIMap.AddTwoNumbers();

 this.UIMap.AssertForAddTwoNumbers();

}

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

8 of 17 02.09.2016 13:40

For more information, see Editing Coded UI Tests Using the Coded UI Test Editor.

You can also view the generated code of the assertion method in UIMap.Designer.cs. However, you should not

edit this file. If you want to make an adapted version of the code, copy the methods to another file such as

UIMap.cs, rename the methods, and edit them there.

The control I want to select loses focus and disappears when I try to select the Add Assertions tool from the Coded UI

Test Builder. How do I select the control?

Selecting a hidden control using the keyboard

Sometimes, when adding controls and validating their properties, you might have to use the keyboard. For

example, when you try to record a coded UI test that uses a context menu control, the list of menu items in the

control will lose focus and disappear when you try to select the Add Assertions tool from the Coded UI Test

Builder. This is demonstrated in the following illustration, where the context menu in Internet Explorer will lose

public void AssertForAddTwoNumbers()

{

 ...

}

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

9 of 17 02.09.2016 13:40

focus and disappear if you try to select it with the Add Assertions tool.

To use the keyboard to select a UI control, hover over the control with the mouse. Then hold down the Ctrl key

and the I key at the same time. Release the keys. The control is recorded by the Coded UT Test Builder.

Warning

If you use Microsoft Lync, you must close Lync before you start the Coded UI Test Builder. Microsoft Lync

interferes with the Ctrl+I keyboard shortcut.

I can’t record a mouse hover on a control. Is there a way around this?

Manually recording mouse hovers

Under some circumstances, a particular control that’s being used in a coded UI test might require you to use the

keyboard to manually record mouse hover events. For example, when you test a Windows Form or a Windows

Presentation Foundation (WPF) application, there might be custom code. Or, there might be special behavior

defined for hovering over a control, such as a tree node expanding when a user hovers over it. To test

circumstances like these, you have to manually notify the Coded UI Test Builder that you are hovering over the

control by pressing predefined keyboard keys.

When you perform your coded UI test, hover over the control. Then press and hold Ctrl, while you press and

hold the Shift and R keys on your keyboard. Release the keys. A mouse hover event is recorded by the Coded UT

Test Builder.

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

10 of 17 02.09.2016 13:40

After you generate the test method, code similar to the following example will be added to the

UIMap.Desinger.cs file:

The key assignment for capturing mouse hover events is being used elsewhere in my environment. Can I change the

default key assignment?

Configuring mouse hover keyboard assignments

If necessary, the default keyboard assignment of Ctrl+Shift+R that is used to apply mouse hovering events in

your coded UI tests can be configured to use different keys.

Warning

You should not have to change the keyboard assignments for mouse hover events under ordinary

circumstances. Use caution when reassigning the keyboard assignment. Your choice might already be in use

elsewhere within Visual Studio or the application being tested.

To change the keyboard assignments, you must modify the following configuration file:

<drive letter:>\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\CodedUITestBuilder.exe.config

In the configuration file, change the values for the HoverKeyModifier and HoverKey keys to modify the

keyboard assignments:

I’m having issues with recording mouse hovers on a website. Is there a fix for this, too?

Setting implicit mouse hovers for the web browser

In many websites, when you hover over a particular control, it expands to show additional details. Generally,

// Mouse hover '1' label at (87, 9)

Mouse.Hover(uIItem1Text, new Point(87, 9));

<!‐‐ Begin : Background Recorder Settings ‐‐>

<!‐‐ HoverKey to use. ‐‐>

<add key="HoverKeyModifier" value="Control, Shift"/>

<add key="HoverKey" value="R"/>

C#

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

11 of 17 02.09.2016 13:40

these look like menus in desktop applications. Because this is a common pattern, coded UI tests enable implicit

hovers for Web browsing. For example, if you record hovers in Internet Explorer, an event is fired. These events

can lead to redundant hovers getting recorded. Because of this, implicit hovers are recorded with

ContinueOnError set to true in the UI test configuration file. This allows playback to continue if a hover event

fails.

To enable the recording of implicit hovers in a Web browser, open the configuration file:

<drive letter:>\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\CodedUITestBuilder.exe.config

Verify that the configuration file has the key RecordImplicitiHovers set to a to a value of true as shown in

the following sample:

Customizing your coded UI test
After you’ve created your coded UI test, you can edit it by using any of the following tools in Visual Studio:

Coded UI Test Builder: Use the Coded UI Test Builder to add additional controls and validation to your tests. See

the section Adding controls and validating their properties in this topic.

Coded UI Test Editor: The Coded UI Test Editor lets you easily modify your coded UI tests. Using the Coded UI

Test Editor, you can locate, view, and edit your test methods. You can also edit UI actions and their associated

controls in the UI control map. For more information, see Editing Coded UI Tests Using the Coded UI Test Editor.

Code Editor:

Manually add code for the controls in your test as described in the Coding UI control actions and properties

section in this topic.

After you create a coded UI test, you can modify it to be data-driven. For more information, see Creating a

Data-Driven Coded UI Test.

In a coded UI test playback, you can instruct the test to wait for certain events to occur, such as a window to

appear, the progress bar to disappear, and so on. To do this, add the appropriate

UITestControl.WaitForControlXXX() method. For a complete list of the available methods, see Making

Coded UI Tests Wait For Specific Events During Playback. For an example of a coded UI test that waits for a

control to be enabled using the WaitForControlEnabled method, see Walkthrough: Creating, Editing and

Maintaining a Coded UI Test.

Coded UI tests include support for some of the HTML5 controls that are included in Internet Explorer 9 and

Internet Explorer 10. For more information, see Using HTML5 Controls in Coded UI Tests.

Coded UI test coding guidance:

<!‐‐Use this to enable/disable recording of implicit hovers.‐‐>

<add key="RecordImplicitHover" value="true"/>

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

12 of 17 02.09.2016 13:40

Anatomy of a Coded UI Test

Best Practices for Coded UI Tests

Testing a Large Application with Multiple UI Maps

Supported Configurations and Platforms for Coded UI Tests and Action Recordings

The Generated Code

When you choose Generate Code, several pieces of code are created:

A line in the test method.

You can right-click in this method to add more recorded actions and verifications. You can also edit it manually

to extend or modify the code. For example, you could enclose some of the code in a loop.

You can also add new test methods and add code to them in the same way. Each test method must have the

[TestMethod] attribute.

A method in UIMap.uitest

This method includes the detail of the actions you recorded or the value that you verified. You can edit this code

by opening UIMap.uitest. It opens in a specialized editor in which you can delete or refactor the recorded

actions.

You can also view the generated method in UIMap.Designer.cs. This method performs the actions that you

recorded when you run the test.

[CodedUITest]

public class CodedUITest1

{ ...

 [TestMethod]

public void CodedUITestMethod1()

 {

this.UIMap.AddTwoNumbers();

// To generate more code for this test, select

// "Generate Code" from the shortcut menu. }

}

// File: UIMap.Designer.cs

public partial class UIMap

{

/// <summary>

/// Add two numbers

/// </summary>

public void AddTwoNumbers()

C#

C#

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

13 of 17 02.09.2016 13:40

Warning

You should not edit this file, because it will be regenerated when you create more tests.

You can make adapted versions of these methods by copying them to UIMap.cs. For example, you could make a

parameterized version that you could call from a test method:

Declarations in UIMap.uitest

These declarations represent the UI controls of the application that are used by your test. They are used by the

generated code to operate the controls and access their properties.

You can also use them if you write your own code. For example, you can have your test method choose a

hyperlink in a Web application, type a value in a text box, or branch off and take different testing actions based

on a value in a field.

You can add multiple coded UI tests and multiple UI map objects and files to facilitate testing a large

application. For more information, see Testing a Large Application with Multiple UI Maps.

For more information about the generated code, see Anatomy of a Coded UI Test.

Coding UI control actions and properties

When you work with UI test controls in coded UI tests they are separated into two parts: actions and properties.

The first part consists of actions that you can perform on UI test controls. For example, coded UI tests can

simulate mouse clicks on a UI test control, or simulate keys typed on the keyboard to affect a UI test control.

The second part consists of enabling you to get and set properties on a UI test control. For example, coded UI

tests can get the count of items in a ListBox, or set a CheckBox to the selected state.

 { ... }

}

// File: UIMap.cs

public partial class UIMap // Same partial class

{

/// <summary>

/// Add two numbers – parameterized version

/// </summary>

public void AddTwoNumbers(int firstNumber, int secondNumber)

 { ... // Code modified to use parameters.

 }

}

C#

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

14 of 17 02.09.2016 13:40

Accessing Actions of UI Test Control

To perform actions on UI test controls, such as mouse clicks or keyboard actions, use the methods in the Mouse and

Keyboard classes:

To perform a mouse-oriented action, such as a mouse click, on a UI test control, use Click.

Mouse.Click(buttonCancel);

To perform a keyboard-oriented action, such as typing into an edit control, use SendKeys.

Keyboard.SendKeys(textBoxDestination, @"C:\Temp\Output.txt");

Accessing Properties of UI Test Control

To get and set UI control specific property values, you can directly get or set the values the properties of a control, or

you can use the UITestControl.GetProperty and UITestControl.SetProperty methods with the name of the specific

property that you want you get or set.

GetProperty returns an object, which can then be cast to the appropriate Type. SetProperty accepts an object for the

value of the property.

To get or set properties from UI test controls directly

With controls that derive from T:Microsoft.VisualStudio.TestTools.UITesting.UITestControl, such as

T:Microsoft.VisualStudio.TestTools.UITesting.HtmlControls.HtmlList or

T:Microsoft.VisualStudio.TestTools.UITesting.WinControls.WinComboBox, you can get or set their property

values directly, as follows:

To get properties from UI test controls

To get a property value from a control, use GetProperty.

To specify the property of the control to get, use the appropriate string from the PropertyNames class in each

control as the parameter to GetProperty.

GetProperty returns the appropriate data type, but this return value is cast as an Object. The return Object must

then be cast as the appropriate type.

Example:

int i = (int)GetProperty(myHtmlList.PropertyNames.ItemCount);

To set properties for UI test controls

To set a property in a control, use SetProperty.

To specify the property of the control to set, use the appropriate string from the PropertyNames class as the

int i = myHtmlList.ItemCount;

myWinCheckBox.Checked = true;

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

15 of 17 02.09.2016 13:40

first parameter to SetProperty, with the property value as the second parameter.

Example:

SetProperty(myWinCheckBox.PropertyNames.Checked, true);

Debugging

You can analyze Coded UI tests using coded UI test logs. Coded UI test logs filter and record important information

about your coded UI test runs. The format of the logs lets you debug issues quickly. For more information, see

Analyzing Coded UI Tests Using Coded UI Test Logs.

What’s next?
Additional options for running coded UI tests: You can run coded UI tests directly from Visual Studio, as described

earlier in this topic. Additionally, you can run automated UI tests from Microsoft Test Manager, or from Team Foundation

Build. When coded UI tests are automated, they have to interact with the desktop when you run them, unlike other

automated tests.

How to: Run Tests from Microsoft Visual Studio

Running Automated Tests in Microsoft Test Manager

How to: Configure and Run Scheduled Tests After Building Your Application

Run tests in your build process

Running automated tests from the command line

How to: Set Up Your Test Agent to Run Tests that Interact with the Desktop

[retired] Using Coded UI Tests in Load Tests

Adding support for custom controls: The coded UI testing framework does not support every possible UI and might

not support the UI you want to test. For example, you cannot immediately create a coded UI test of the UI for Microsoft

Excel. However, you can create an extension to the coded UI testing framework that will support a custom control.

Enable Coded UI Testing of Your Controls

Extending Coded UI Tests and Action Recordings to Support Microsoft Excel

Coded UI Tests are often used to automate manual tests. For additional guidance, see Testing for Continuous Delivery

with Visual Studio 2012 – Chapter 5: Automating System Tests. For more information about manual tests, see [retired]

Creating Manual Test Cases Using Microsoft Test Manager. For more information about automated system tests, see

Creating Automated Tests Using Microsoft Test Manager.

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

16 of 17 02.09.2016 13:40

External Resources

Guidance

Testing for Continuous Delivery with Visual Studio 2012 – Chapter 2: Unit Testing: Testing the Inside

Testing for Continuous Delivery with Visual Studio 2012 – Chapter 5: Automating System Tests

FAQ

Coded UI Tests FAQ - 1

Coded UI Tests FAQ -2

Forum

Visual Studio UI Automation Testing (includes CodedUI)

See Also
T:Microsoft.VisualStudio.TestTools.UITest.Common.UIMap.UIMap

Assert

Improve Code Quality

Walkthrough: Creating, Editing and Maintaining a Coded UI Test

Anatomy of a Coded UI Test

Best Practices for Coded UI Tests

Testing a Large Application with Multiple UI Maps

Editing Coded UI Tests Using the Coded UI Test Editor

Supported Configurations and Platforms for Coded UI Tests and Action Recordings

Upgrading Coded UI Tests from Visual Studio 2010

Generating a Coded UI Test from an Existing Action Recording

© 2016 Microsoft

Use UI Automation To Test Your Code https://msdn.microsoft.com/en-us/library/dd286726(d=printer).aspx

17 of 17 02.09.2016 13:40

Walkthrough: Creating, Editing and
Maintaining a Coded UI Test

In this walkthrough, you will create a simple Windows Presentation Foundation (WPF) application to demonstrate how to

create, edit, and maintain a coded UI test. The walkthrough provides solutions for correcting tests that have been broken by

various timing issues and control refactoring.

Prerequisites
For this walkthrough you will need:

Visual Studio Enterprise

Create a Simple WPF Application

On the FILE menu, point to New, and then select Project.

The New Project dialog box appears.

1.

In the Installed pane, expand Visual C#, and then select Windows Desktop.2.

Above the middle pane, verify that the target framework drop-down list is set to .NET Framework 4.5.3.

In the middle pane, select the WPF Application template.4.

In the Name text box, type SimpleWPFApp.5.

Choose a folder where you will save the project. In the Location text box, type the name of the folder.6.

Choose OK.

The WPF Designer for Visual Studio opens and displays MainWindow of the project.

7.

If the toolbox is not currently open, open it. Choose the VIEW menu, and then choose Toolbox.8.

Under the All WPF Controls section, drag a Button, CheckBox and ProgressBar control onto the MainWindow in

the design surface.

9.

Select the Button control. In the Properties window, change the value for the Name property from <No Name> to

button1. Then change the value for the Content property from Button to Start.

10.

Select the ProgressBar control. In the Properties window, change the value for the value for the Name property from

<No Name> to progressBar1. Then change the value for the Maximum property from 100 to 10000.

11.

Select the Checkbox control. In the Properties window, change the value for the Name property from <No Name> to12.

Visual Studio 2015

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

1 of 10 02.09.2016 13:41

checkBox1 and clear the IsEnabled property.

Double-click the button control to add a click event handler.

The MainWindow.xmal.cs is displayed in the Code Editor with the cursor in the new button1_Click method.

13.

At the top of the MainWindow class, add a delegate. The delegate will be used for the progress bar. To add the

delegate, add the following code:

14.

In the button1_Click method, add the following code:15.

public partial class MainWindow : Window

{

private delegate void ProgressBarDelegate(System.Windows.DependencyProperty

dp, Object value);

public MainWindow()

 {

 InitializeComponent();

 }

private void button1_Click(object sender, RoutedEventArgs e)

{

double progress = 0;

 ProgressBarDelegate updatePbDelegate =

new ProgressBarDelegate(progressBar1.SetValue);

do

C#

C#

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

2 of 10 02.09.2016 13:41

Save the file.16.

Verify the WPF Application Runs Correctly

On the DEBUG menu, select Start Debugging or press F5.1.

Notice that the check box control is disabled. Choose Start.

In a few seconds, the progress bar should be 100% complete.

2.

You can now select the check box control.3.

Close SimpleWPFApp.4.

Create and Run a Coded UI Test for SimpleWPFApp

Locate the SimpleWPFApp application that you created earlier. By default, the application will be located at C:\Users

\<username>\Documents\Visual Studio <version>\Projects\SimpleWPFApp\SimpleWPFApp\bin\Debug

\SimpleWPFApp.exe

1.

Create a desktop shortcut to the SimpleWPFApp application. Right-click SimpleWPFApp.exe and choose Copy. On

your desktop, right-click and choose Paste shortcut.

Tip

A shortcut to the application makes it easier to add or modify Coded UI tests for your application because it lets

you start the application quickly.

2.

In Solution Explorer, right-click the solution, choose Add and then select New Project.

The Add New Project dialog box appears.

3.

In the Installed pane, expand Visual C#, and then select Test.4.

 {

 progress ++;

 Dispatcher.Invoke(updatePbDelegate,

 System.Windows.Threading.DispatcherPriority.Background,

new object[] { ProgressBar.ValueProperty, progress });

 progressBar1.Value = progress;

 }

while (progressBar1.Value != progressBar1.Maximum);

 checkBox1.IsEnabled = true;

}

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

3 of 10 02.09.2016 13:41

In the middle pane, select the Coded UI Test Project template.5.

Choose OK.

In Solution Explorer, the new coded UI test project named CodedUITestProject1 is added to your solution.

The Generate Code for Coded UI Test dialog box appears.

6.

Select the Record actions, edit UI map or add assertions option and choose OK.

The UIMap – Coded UI Test Builder appears, and the Visual Studio window is minimized.

For more information about the options in the dialog box, see Creating Coded UI Tests.

7.

Choose Start Recording on the UIMap – Coded UI Test Builder.

You can pause the recording if needed, for example if you have to deal with incoming mail.

Warning

All actions performed on the desktop will be recorded. Pause the recording if you are performing actions that may

lead to sensitive data being included in the recording.

8.

Launch the SimpleWPFApp using the desktop shortcut.

As before, notice that the check box control is disabled.

9.

On the SimpleWPFApp, choose Start.

In a few seconds, the progress bar should be 100% complete.

10.

Check the check box control which is now enabled.11.

Close the SimpleWPFApp application.12.

On the UIMap - Coded UI Test Builder, choose Generate Code.13.

In the Method Name type SimpleAppTest and choose Add and Generate. In a few seconds, the Coded UI test

appears and is added to the Solution.

14.

Close the UIMap – Coded UI Test Builder.

The CodedUITest1.cs file appears in the Code Editor.

15.

Save your project.16.

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

4 of 10 02.09.2016 13:41

Run the Coded UI Test

From the TEST menu, choose Windows and then choose Test Explorer.1.

From the BUILD menu, choose Build Solution.2.

In the CodedUITest1.cs file, locate the CodedUITestMethod method, right-click and select Run Tests, or run the test

from Test Explorer.

While the coded UI test runs, the SimpleWPFApp is visible. It conducts the steps that you did in the previous

procedure. However, when the test tries to select the check box for the check box control, the Test Results window

shows that the test failed. This is because the test tries to select the check box but is not aware that the check box

control is disabled until the progress bar is 100% complete. You can correct this and similar issues by using the

various UITestControl.WaitForControlXXX() methods that are available for coded UI testing. The next

procedure will demonstrate using the WaitForControlEnabled() method to correct the issue that caused this test

to fail. For more information, see Making Coded UI Tests Wait For Specific Events During Playback.

3.

Edit and Rerun the Coded UI Test

In the Test Explorer window, select the failed test and in the StackTrace section, choose the first link to

UIMap.SimpleAppTest().

1.

The UIMap.Designer.cs file opens with the point of error highlighted in the code:2.

To correct this problem, you can make the coded UI test wait for the CheckBox control to be enabled before

continuing on to this line using the WaitForControlEnabled() method.

Warning

Do not modify the UIMap.Designer.cs file. Any code changes you make in the UIMapDesigner.cs file will be

overwritten every time you generate code using the UIMap - Coded UI Test Builder. If you have to modify a

recorded method, you must copy it to UIMap.cs file and rename it. The UIMap.cs file can be used to override

methods and properties in the UIMapDesigner.cs file. You must remove the reference to the original method in the

Coded UITest.cs file and replace it with the renamed method name.

3.

In Solution Explorer, locate UIMap.uitest in your coded UI test project.4.

Open the shortcut menu for UIMap.uitest and choose Open.

The coded UI test is displayed in the Coded UI Test Editor. You can now view and edit the coded UI test.

5.

// Select 'CheckBox' check box

uICheckBoxCheckBox.Checked = this.SimpleAppTestParams.UICheckBoxCheckBoxChecked;

C#

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

5 of 10 02.09.2016 13:41

In the UI Action pane, select the test method (SimpleAppTest) that you want to move to the UIMap.cs or UIMap.vb

file to facilitate custom code functionality which won’t be overwritten when the test code is recompiled.

6.

Choose the Move Code button on the Coded UI Test Editor toolbar.7.

A Microsoft Visual Studio dialog box is displayed. It warns you that the method will be moved from the UIMap.uitest

file to the UIMap.cs file and that you will no longer be able to edit the method using the Coded UI Test Editor.

Choose Yes.

The test method is removed from the UIMap.uitest file and no longer is displayed in the UI Actions pane. To edit the

moved test file, open the UIMap.cs file from Solution Explorer.

8.

On the Visual Studio toolbar, choose Save.

The updates to the test method are saved in the UIMap.Designer file.

Caution

Once you have moved the method, you can no longer edit it using the Coded UI Test Editor. You must add your

custom code and maintain it using the Code Editor.

9.

Rename the method from SimpleAppTest() to ModifiedSimpleAppTest()10.

Add the following using statement to the file:11.

Add the following WaitForControlEnabled() method before the offending line of code identified previously:12.

In the CodedUITest1.cs file, locate the CodedUITestMethod method and either comment out or rename the

reference to the original SimpleAppTest() method and then replace it with the new ModifiedSimpleAppTest():

13.

using Microsoft.VisualStudio.TestTools.UITesting.WpfControls;

uICheckBoxCheckBox.WaitForControlEnabled();

// Select 'CheckBox' check box

uICheckBoxCheckBox.Checked = this.SimpleAppTestParams.UICheckBoxCheckBoxChecked;

[TestMethod]

public void CodedUITestMethod1()

 {

C#

C#

C#

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

6 of 10 02.09.2016 13:41

On the BUILD menu, choose Build Solution.14.

Right-click the CodedUITestMethod method and select Run Tests.15.

This time the coded UI test successfully completes all the steps in the test and Passed is displayed in the Test Explorer

window.

16.

Refactor a Control in the SimpleWPFApp

In the MainWindow.xaml file, in the Designer, select the button control.1.

At the top of the Properties window, change the Name property value from button1 to buttonA.2.

On the BUILD menu, choose Build Solution.3.

In Test Explorer, run CodedUITestMethod1.

The test fails because the coded UI test cannot locate the button control that was originally mapped in the UIMap as

button1. Refactoring can impact coded UI tests in this manner.

4.

In the Test Explorer window, in the StackTrace section, choose the first link next to

UIMpa.ModifiedSimpleAppTest().

The UIMap.cs file opens. The point of error is highlighted in the code:

Notice that the line of code earlier in this procedure is using UiStartButton, which is the UIMap name before it was

refactored.

To correct the issue, you can add the refactored control to the UIMap by using the Coded UI Test Builder. You can

update the test’s code to use the code, as demonstrated in the next procedure.

5.

Map Refactored Control and Edit and Rerun the Coded UI Test

In the CodedUITest1.cs file, in the CodedUITestMethod1() method, right-click, select Generate Code for Coded UI1.

// To generate code for this test, select "Generate Code for Coded UI

Test" from the shortcut menu and select one of the menu items.

// For more information on generated code, see http://go.microsoft.com

/fwlink/?LinkId=179463

//this.UIMap.SimpleAppTest();

this.UIMap.ModifiedSimpleAppTest();

 }

// Click 'Start' button

Mouse.Click(uIStartButton, new Point(27, 10));

C#

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

7 of 10 02.09.2016 13:41

Test and then choose Use Coded UI Test Builder.

The UIMap – Coded UI Test Builder appears.

Using the desktop shortcut you created earlier, run the SimpleWPFApp application that you created earlier.2.

On the UIMap – Coded UI Test Builder, drag the crosshair tool to the Start button on the SimpleWPFApp.

The Start button is enclosed in a blue box and the Coded UI Test Builder takes a few seconds to process the data for

the selected control and displays the controls properties. Notice that the AutomationUId is named buttonA.

3.

In the properties for the control, choose the arrow at the upper-left corner to expand the UI Control Map. Notice that

UIStartButton1 is selected.

4.

In the toolbar, choose the Add control to UI Control Map.

The status at the bottom of the window verifies the action by displaying Selected control has been added to the

UI control map.

5.

On the UIMap – Coded UI Test Builder, choose Generate Code.

The Coded UI Test Builder – Generate Code appears with a note indicating that no new method is required and that

code will only be generated for the changes to the UI control map.

6.

Choose Generate.7.

Close SimpleWPFApp.exe.8.

Close UIMap – Coded UI Test Builder.

The UIMap – Coded UI Test Builder takes a few seconds to process the UI control map changes.

9.

In Solution Explorer, open the UIMap.Designer.cs file.10.

In the UIMap.Designer.cs file, locate the UIStartButton1 property. Notice the SearchProperties is set to "buttonA":11.

public WpfButton UIStartButton1

 {

get

 {

if ((this.mUIStartButton1 == null))

 {

this.mUIStartButton1 = new WpfButton(this);

#region Search Criteria

this.mUIStartButton1.SearchProperties[WpfButton.PropertyNames.AutomationId] =

"buttonA";

this.mUIStartButton1.WindowTitles.Add("MainWindow");

#endregion

 }

return this.mUIStartButton1;

 }

C#

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

8 of 10 02.09.2016 13:41

Now you can modify the coded UI test to use the newly mapped control. As pointed out in the previous procedure if

you want to override any methods or properties in the coded UI test, you must do so in the UIMap.cs file.

In the UIMap.cs file, add a constructor and specify the SearchProperties property of the UIStartButton property

to use the AutomationID property with a value of "buttonA":

12.

On the BUILD menu, choose Build Solution.13.

In Test Explorer, run CodedUITestMethod1.

This time, the coded UI test successfully completes all the steps in the test. In the Test Results Window, you will see a

status of Passed.

14.

External Resources

Videos

Coded UI Tests-DeepDive-Episode1-GettingStarted

Coded UI Tests-DeepDive-Episode2-MaintainenceAndDebugging

Coded UI Tests-DeepDive-Episode3-HandCoding

Hands on lab

MSDN Virtual Lab: Introduction to Creating Coded UI Tests with Visual Studio 2010

FAQ

 }

public UIMap()

 {

this.UIMainWindowWindow.UIStartButton.SearchProperties[WpfButton.PropertyNames.AutomationId]

= "buttonA";

 }

C#

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

9 of 10 02.09.2016 13:41

Coded UI Tests FAQ - 1

Coded UI Tests FAQ -2

Forum

Visual Studio UI Automation Testing (includes CodedUI)

See Also
Use UI Automation To Test Your Code

Getting Started with the WPF Designer

Supported Configurations and Platforms for Coded UI Tests and Action Recordings

Editing Coded UI Tests Using the Coded UI Test Editor

© 2016 Microsoft

Walkthrough: Creating, Editing and Maintaining a Coded UI Test https://msdn.microsoft.com/en-us/library/ff977233(d=printer).aspx

10 of 10 02.09.2016 13:41

Test Windows Phone 8.1 Apps with Coded UI
Tests

Use coded UI tests to test your Windows Phone apps.

Create a simple Windows Phone app

Create a new project for a blank Windows Phone app using either Visual C# or Visual Basic template.1.

In Solution Explorer, open MainPage.xaml. From the Toolbox, drag a button control and a textbox control to the

design surface.

2.

Visual Studio 2015

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

1 of 20 02.09.2016 13:42

In the Properties window, name the button control.3.

Name the textbox control.4.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

2 of 20 02.09.2016 13:42

On designer surface, double-click the button control and add the following code:5.

Press F5 to run your Windows Phone app in the emulator and verify that it’s working.6.

Public NotInheritable Class MainPage

Inherits Page

Private Sub button_Click(sender As Object, e As RoutedEventArgs) Handles

Button.Click

Me.textBox.Text = Me.button.Name

End Sub

End Class

VB

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

3 of 20 02.09.2016 13:42

Exit the emulator.7.

Deploy the Windows Phone app

Before a coded UI test can map an app’s controls, you have to deploy the app.1.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

4 of 20 02.09.2016 13:42

The emulator starts. The app is now available for testing.

Keep the emulator running while you create your coded UI test.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

5 of 20 02.09.2016 13:42

Create a coded UI test for the Windows Phone app

Add a new coded UI test project to the solution with the Windows Phone app.1.

Choose to edit the UI map using the cross-hair tool.2.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

6 of 20 02.09.2016 13:42

Use the cross-hair tool to select the app, then copy the value for the app’s AutomationId property, which will be

used later to start the app in the test.

3.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

7 of 20 02.09.2016 13:42

In the emulator, start the app and use the cross-hair tool to select the button control. Then add the button control

to the UI control map.

4.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

8 of 20 02.09.2016 13:42

To add the textbox control to the UI control map, repeat the previous step.5.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

9 of 20 02.09.2016 13:42

Generate code to create code for changes to the UI control map.6.

Use the cross-hair tool to select the textbox control, and then select the Text property.7.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

10 of 20 02.09.2016 13:42

Add an assertion. It will be used in the test to verify that the value is correct.8.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

11 of 20 02.09.2016 13:42

Add and generate code for the assert method.9.

Visual C#

In Solution Explorer, open the UIMap.Designer.cs file to view the code you just added for the assert method and

the controls.

Visual Basic

In Solution Explorer, open the CodedUITest1.vb file. In the CodedUITestMethod1() test method code, right-click

10.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

12 of 20 02.09.2016 13:42

the call to the assertion method that was automatically added Me.UIMap.AssertMethod1() and choose Go To

Definition. This will open the UIMap.Designer.vb file in the code editor so you can view the code you added for

the assert method and the controls.

Warning

Do not modify the UIMap.designer.cs or UIMap.Designer.vb file directly. If you do this, the changes to the file

will be overwritten each time the test is generated.

Assert method

Controls

Public Sub AssertMethod1()

Dim uITextBoxEdit As XamlEdit = Me.UIApp1Window.UITextBoxEdit

'Verify that the 'Text' property of 'textBox' text box equals 'button'

 Assert.AreEqual(Me.AssertMethod1ExpectedValues.UITextBoxEditText,

uITextBoxEdit.Text)

End Sub

#Region "Properties"

Public ReadOnly Property UIButtonButton() As XamlButton

Get

If (Me.mUIButtonButton Is Nothing) Then

Me.mUIButtonButton = New XamlButton(Me)

Me.mUIButtonButton.SearchProperties(XamlButton.PropertyNames.AutomationId) =

"button"

End If

Return Me.mUIButtonButton

End Get

End Property

Public ReadOnly Property UITextBoxEdit() As XamlEdit

Get

If (Me.mUITextBoxEdit Is Nothing) Then

Me.mUITextBoxEdit = New XamlEdit(Me)

Me.mUITextBoxEdit.SearchProperties(XamlEdit.PropertyNames.AutomationId) = "textBox"

End If

Return Me.mUITextBoxEdit

End Get

End Property

#End Region

VB

VB

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

13 of 20 02.09.2016 13:42

In Solution Explorer, open the CodedUITest1.cs or CodedUITest1.vb file. You can now add code to the

CodedUTTestMethod1 method for the actions needed to run the test. Use the controls that were added to the

UIMap to add code:

Launch the Windows Phone app using the automation ID property you copied to the clipboard previously:a.

Add a gesture to tap the button control:b.

Verify that the call to the assert method that was automatically generated comes after launching the app

and tap gesture on the button:

c.

After the code is added, the CodedUITestMethod1 test method should appear as follows:

11.

#Region "Fields"

Private mUIButtonButton As XamlButton

Private mUITextBoxEdit As XamlEdit

#End Region

XamlWindow.Launch("ed85f6ff‐2fd1‐4ec5‐9eef‐696026c3fa7b_cyrqexqw8cc7c!App");

Gesture.Tap(Me.UIMap.UIApp1Window.UIButtonButton)

Me.UIMap.AssertMethod1()

<CodedUITest>

Public Class CodedUITest1

 <TestMethod()>

Public Sub CodedUITestMethod1()

'

' To generate code for this test, select "Generate Code for Coded UI Test"

from the shortcut menu and select one of the menu items.

'

' Launch the app.

 XamlWindow.Launch("ed85f6ff‐2fd1‐4ec5‐9eef‐696026c3fa7b_cyrqexqw8cc7c!App")

'// Tap the button.

 Gesture.Tap(Me.UIMap.UIApp1Window.UIButtonButton)

Me.UIMap.AssertMethod1()

End Sub

VB

VB

VB

VB

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

14 of 20 02.09.2016 13:42

Run the coded UI test

Build your test and then run the test using the test explorer.

The Windows Phone app launches, the action to tap the button is completed, and the textbox’s Text property is

populated and validated using the assert method.

After the test is finished, the test explorer confirms that the test passed.

1.

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

15 of 20 02.09.2016 13:42

Use Data-driven coded UI tests on Windows Phone apps
To test different conditions, a coded UI test can be run multiple times with different sets of data.

Data-driven Coded UI tests for Windows Phone are defined using the DataRow attribute on a test method. In the

following example, x and y use the values of 1 and 2 for the first iteration and -1 and -2 for the second iteration of the

test.

Q & A

Q: Do I have to deploy the Windows Phone app in the emulator in order to map UI controls?

[DataRow(1, 2, DisplayName = "Add positive numbers")]

[DataRow(‐1, ‐2, DisplayName = "Add negative numbers")]

[TestMethod]

public void DataDrivingDemo_MyTestMethod(int x, int y)

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

16 of 20 02.09.2016 13:42

A: Yes, the coded UI test builder requires that an emulator be running and the app be deployed to it. Otherwise, it will

throw an error message saying that no running emulator could be found.

Q: Can tests be executed on the emulator only, or can I also use a physical device?

A: Either option is supported. The target for test execution is selected by changing the emulator type or selecting

device in the device toolbar. If Device is selected, a Phone Blue device needs to be connected to one of the machine’s

USB ports.

Q: Why don’t I see the option to record my coded UI test in the Generate Code for a Coded UI

Test dialog?

A: The option to record is not supported for Windows Phone apps.

Q: Can I create a coded UI test for my Windows Phone apps based on WinJS, Silverlight or

HTML5?

A: No, only XAML based apps are supported.

Q: Can I create coded UI tests for my Windows Phone apps on a system that is not running

Windows 8.1 or Windows 10?

A: No, the Coded UI Test Project templates are only available on Windows 8.1 and Windows 10. To create automation

for Universal Windows Platform (UWP) apps, you'll need Windows 10.

Q: How do I create coded UI tests for Universal Windows Platform (UWP) apps?

A: Depending on the platform where you're testing your UWP app, create coded UI test project in one of these ways:

A UWP app running on local machine will run as a Store app. To test this, you must use the Coded UI Test

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

17 of 20 02.09.2016 13:42

Project (Windows) template. To find this template when you create a new project, go to the Windows,

Universal node. Or go to the Windows, Windows 8, Windows node.

A UWP app running on mobile device or emulator will run as a Phone app. To test this, you must use the Coded

UI Test Project (Windows Phone) template. To find this template when you create a new project, go to the

Windows, Universal node. Or go to the Windows, Windows 8, Windows Phone node.

After you create the project, authoring a test stays the same as before.

Q: Can I select controls that are outside the emulator?

A: No, the builder will not detect them.

Q: Can I use the coded UI test builder to map controls using a physical phone device?

A: No, The builder can only map UI elements if your app has been deployed to the emulator.

Q: Why can’t I modify the code in the UIMap.Designer file?

A: Any code changes you make in the UIMapDesigner.cs file will be overwritten every time you generate code using the

UIMap - Coded UI Test Builder. If you have to modify a recorded method, you must copy it to UIMap.cs file and

rename it. The UIMap.cs file can be used to override methods and properties in the UIMapDesigner.cs file. You must

remove the reference to the original method in the Coded UITest.cs file and replace it with the renamed method name.

Q: Can I run a coded UI test on my Windows Phone app from the command-line?

A: Yes, you use a runsettings file to specify the target device for test execution. For example:

vstest.console.exe “pathToYourCodedUITestDll” /settings:devicetarget.runsettings

Sample runsettings file:

Q: What are the differences between coded UI tests for XAML-based Windows Store apps and

Windows Phone apps?

A: These are some of the key differences:

<?xml version="1.0" encoding="utf‐8"?>

<RunSettings>

<MSPhoneTest>

<!‐‐to specify test execution on device, use a TargetDevice option as follows‐‐>

<TargetDevice>Device</TargetDevice>

<!‐‐to specify an emulator instead, use a TargetDevice option like below‐‐>

<!‐‐<TargetDevice>Emulator 8.1 WVGA 4 inch 512MB</TargetDevice>‐‐>

</MSPhoneTest>

</RunSettings>

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

18 of 20 02.09.2016 13:42

Feature Windows Store apps
Windows

Phone apps

Target for

running tests

Local or remote computer. Remote computers can be specified when you use

an automated test case to run tests. See Automate a test case in Microsoft Test

Manager.

Emulator or

device. See, Q:

Can tests be

executed on the

emulator only,

or can I also use

a physical

device? in this

topic.

Execute from

the

command-line

Settings file not required to specify target. Runsettings file

required to

specify target.

Specialized

classes for

Shell Controls

T:Microsoft.VisualStudio.TestTools.UITesting.DirectUIControls.DirectUIControl UITestControl

WebView

control in a

XAML app

Supported if you use Html* specialized classes to interact with HTML elements.

See Microsoft.VisualStudio.TestTools.UITesting.HtmlControls.

Not supported.

Execute

automated

tests from

MTM

Supported. Not supported.

Data-driven

tests

See Data-driven tests for information about using external data-sources and

using DataSource attribute on a test method.

Data is

specified inline,

using DataRow

attribute on a

test method.

See Use

Data-driven

coded UI tests

on Windows

Phone apps in

this topic.

For information about coded UI tests for Windows Store apps, see Test Windows Store 8.1 Apps with Coded UI Tests.

External resources

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

19 of 20 02.09.2016 13:42

Microsoft Visual Studio Application Lifecycle Management blog: Using Coded UI to test XAML-based Windows Phone

apps

See Also
Use UI Automation To Test Your Code

© 2016 Microsoft

Test Windows Phone 8.1 Apps with Coded UI Tests https://msdn.microsoft.com/en-us/library/dn747198(d=printer).aspx

20 of 20 02.09.2016 13:42

Creating a Data-Driven Coded UI Test

To test different conditions, you can run your tests multiple times with different parameter values. Data-driven coded UI

tests are a convenient way to do this. You define parameter values in a data source, and each row in the data source is an

iteration of the coded UI test. The overall result of the test will be based on the outcome for all the iterations. For example, if

one test iteration fails, the overall test result is failure.

Requirements

Visual Studio Enterprise

Create a data-driven coded UI test
This sample creates a coded UI test that runs on the Windows Calculator application. It adds two numbers together and

uses an assertion to validate that the sum is correct. Next, the assertion and the parameter values for the two numbers are

coded to become data-driven and stored in a comma-separated value (.csv) file.

Step 1 - Create a coded UI test

Create a project.1.

Visual Studio 2015

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

1 of 13 03.09.2016 15:49

Choose to record the actions.2.

Open the calculator app and start recording the test.3.

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

2 of 13 03.09.2016 15:49

Add 1 plus 2, pause the recorder, and generate the test method. Later we’ll replace the values of this user input

with values from a data file.

Close the test builder. The method is added to the test:

4.

[TestMethod]

public void CodedUITestMethod1()

{

// To generate code for this test, select "Generate Code for Coded UI Test"

from the shortcut menu and select one of the menu items.

this.UIMap.AddNumbers();

}

C#

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

3 of 13 03.09.2016 15:49

Use the AddNumbers() method to verify that the test runs. Place the cursor in the test method shown above, open

the context menu, and choose Run Tests. (Keyboard shortcut: Ctrl + R, T).

The test result that shows if the test passed or failed is displayed in the Test Explorer window. To open the Test

Explorer window, from the TEST menu, choose Windows and then choose Test Explorer.

5.

Because a data source can also be used for assertion parameter values—which are used by the test to verify

expected values—let’s add an assertion to validate that the sum of the two numbers is correct. Place the cursor in

the test method shown above, open the context menu and choose Generate Code for Coded UI Test, and then

Use Coded UI Test Builder.

Map the text control in the calculator that displays the sum.

6.

Add an assertion that validates that the value of the sum is correct. Choose the DisplayText property that has the

value of 3 and then choose Add Assertion. Use the AreEqual comparator and verify that the comparison value is

3.

7.

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

4 of 13 03.09.2016 15:49

After configuring the assertion, generate code from the builder again. This creates a new method for the validation.

Because the ValidateSum method validates the results of the AddNumbers method, move it to the bottom of the

code block.

8.

public void CodedUITestMethod1()

{

// To generate code for this test, select "Generate Code for Coded UI Test"

from the shortcut menu and select one of the menu items.

this.UIMap.AddNumbers();

this.UIMap.ValidateSum();

}

C#

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

5 of 13 03.09.2016 15:49

Verify that the test runs by using the ValidateSum() method. Place the cursor in the test method shown above,

open the context menu, and choose Run Tests. (Keyboard shortcut:Ctrl + R, T).

At this point, all the parameter values are defined in their methods as constants. Next, let’s create a data set to

make our test data-driven.

9.

Step 2 - Create a data set

Add a text file to the dataDrivenSample project named data.csv.1.

Populate the .csv file with the following data:

Num1 Num2 Sum

3 4 7

5 6 11

6 8 14

After adding the data, the file should appear as the following:

2.

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

6 of 13 03.09.2016 15:49

It is important to save the .csv file using the correct encoding. On the FILE menu, choose Advanced Save Options

and choose Unicode (UTF-8 without signature) – Codepage 65001 as the encoding.

3.

The .csv file, must be copied to the output directory, or the test can’t run. Use the Properties window to copy it.4.

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

7 of 13 03.09.2016 15:49

Now that we have the data set created, let’s bind the data to the test.

Step 3 – Add data source binding

To bind the data source, add a DataSource attribute within the existing [TestMethod] attribute that is

immediately above the test method.

The data source is now available for you to use in this test method.

Tip

See data source attribute samples in the Q & A section for samples of using other data source types such as

XML, SQL Express and Excel.

1.

Run the test.

Notice that the test runs through three iterations. This is because the data source that was bound contains three

rows of data. However, you will also notice that the test is still using the constant parameter values and is adding 1

+ 2 with a sum of 3 each time.

Next, we’ll configure the test to use the values in the data source file.

2.

Step 4 – Use the data in the coded UI test

Add using Microsoft.VisualStudio.TestTools.UITesting.WinControls to the top of the CodedUITest.cs

file:

1.

[DataSource("Microsoft.VisualStudio.TestTools.DataSource.CSV",

"|DataDirectory|\\data.csv", "data#csv", DataAccessMethod.Sequential),

DeploymentItem("data.csv"), TestMethod]

public void CodedUITestMethod1()

{

 // To generate code for this test, select "Generate Code for Coded UI Test"

from the shortcut menu and select one of the menu items.

 this.UIMap.AddNumbers();

 this.UIMap.ValidateSum();

}

using System;

using System.Collections.Generic;

using System.Text.RegularExpressions;

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

8 of 13 03.09.2016 15:49

Add TestContext.DataRow[] in the CodedUITestMethod1() method which will apply values from the data

source. The data source values override the constants assigned to UIMap controls by using the controls

SearchProperties:

To figure out which search properties to code the data to, use the Coded UI Test Editor.

Open the UIMap.uitest file.

2.

using System.Windows.Input;

using System.Windows.Forms;

using System.Drawing;

using Microsoft.VisualStudio.TestTools.UITesting;

using Microsoft.VisualStudio.TestTools.UnitTesting;

using Microsoft.VisualStudio.TestTools.UITest.Extension;

using Keyboard = Microsoft.VisualStudio.TestTools.UITesting.Keyboard;

using Microsoft.VisualStudio.TestTools.UITesting.WinControls;

public void CodedUITestMethod1()

{

 // To generate code for this test, select "Generate Code for Coded UI Test"

from the shortcut menu and select one of the menu items.

this.UIMap.UICalculatorWindow.UIItemWindow.UIItem1Button.SearchProperties[WinButton.PropertyNames.Name]

= TestContext.DataRow["Num1"].ToString();

this.UIMap.UICalculatorWindow.UIItemWindow21.UIItem2Button.SearchProperties[WinButton.PropertyNames.Nam

= TestContext.DataRow["Num2"].ToString();

 this.UIMap.AddNumbers();

 this.UIMap.ValidateSumExpectedValues.UIItem2TextDisplayText =

TestContext.DataRow["Sum"].ToString();

 this.UIMap.ValidateSum();

}

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

9 of 13 03.09.2016 15:49

Choose the UI action and observe the corresponding UI control mapping. Notice how the mapping

corresponds to the code, for example,

this.UIMap.UICalculatorWindow.UIItemWindow.UIItem1Button.

In the Properties Window, open Search Properties. The search properties Name value is what is being

manipulated in the code using the data source. For example, the SearchProperties is being assigned the

values in the first column of each data row:

UIItem1Button.SearchProperties[WinButton.PropertyNames.Name] =

TestContext.DataRow["Num1"].ToString();. For the three iterations, this test will change the Name

value for the search property to 3, then 5, and finally 6.

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

10 of 13 03.09.2016 15:49

Save the solution.3.

Step 5 – Run the data-driven test

Verify that the test is now data-driven by running the test again.

You should see the test run through the three iterations using the values in the .csv file. The validation should work

as well and the test should display as passed in the Test Explorer.

1.

Guidance

For additional information, see Testing for Continuous Delivery with Visual Studio 2012 – Chapter 2: Unit Testing: Testing

the Inside and Testing for Continuous Delivery with Visual Studio 2012 – Chapter 5: Automating System Tests

Q & A

What are the data source attributes for other data source types, such as SQL Express or XML?

You can use the sample data source strings in the table below by copying them to your code and making the necessary

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

11 of 13 03.09.2016 15:49

customizations.

Date Source

Type
Data Source Attribute

CSV

Excel

Test case in

Team

Foundation

Server

XML

SQL Express

Q: Can I use data-driven tests on my Windows Phone app?

A: Yes. Data-driven Coded UI tests for Windows Phone are defined using the DataRow attribute on a test method. In

[DataSource("Microsoft.VisualStudio.TestTools.DataSource.CSV",

"|DataDirectory|\\data.csv", "data#csv",

DataAccessMethod.Sequential), DeploymentItem("data.csv"), TestMethod]

DataSource("System.Data.Odbc", "Dsn=ExcelFiles;Driver={Microsoft

Excel Driver (*.xls)};dbq=|DataDirectory|\\Data.xls;defaultdir=.;

driverid=790;maxbuffersize=2048;pagetimeout=5;readonly=true",

"Sheet1$", DataAccessMethod.Sequential),

DeploymentItem("Sheet1.xls"), TestMethod]

[DataSource("Microsoft.VisualStudio.TestTools.DataSource.TestCase",

"http://vlm13261329:8080/tfs/DefaultCollection;Agile", "30",

DataAccessMethod.Sequential), TestMethod]

[DataSource("Microsoft.VisualStudio.TestTools.DataSource.XML",

"|DataDirectory|\\data.xml", "Iterations",

DataAccessMethod.Sequential), DeploymentItem("data.xml"), TestMethod]

[DataSource("System.Data.SqlClient", "Data Source=.\\sqlexpress;

Initial Catalog=tempdb;Integrated Security=True", "Data",

DataAccessMethod.Sequential), TestMethod]

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

12 of 13 03.09.2016 15:49

the following example, x and y use the values of 1 and 2 for the first iteration and -1 and -2 for the second iteration of

the test.

For more information, see Use Data-driven coded UI tests on Windows Phone apps.

Q: Why can’t I modify the code in the UIMap.Designer file?

A: Any code changes you make in the UIMapDesigner.cs file will be overwritten every time you generate code using the

UIMap - Coded UI Test Builder. In this sample, and in most cases, the code changes needed to enable a test to use a

data source can be made to the test's source code file (that is, CodedUITest1.cs).

If you have to modify a recorded method, you must copy it to UIMap.cs file and rename it. The UIMap.cs file can be

used to override methods and properties in the UIMapDesigner.cs file. You must remove the reference to the original

method in the Coded UITest.cs file and replace it with the renamed method name.

See Also
T:Microsoft.VisualStudio.TestTools.UITest.Common.UIMap.UIMap

Assert

Use UI Automation To Test Your Code

Creating Coded UI Tests

Best Practices for Coded UI Tests

Supported Configurations and Platforms for Coded UI Tests and Action Recordings

© 2016 Microsoft

[DataRow(1, 2, DisplayName = "Add positive numbers")]

[DataRow(‐1, ‐2, DisplayName = "Add negative numbers")]

[TestMethod]

public void DataDrivingDemo_MyTestMethod(int x, int y)

Creating a Data-Driven Coded UI Test https://msdn.microsoft.com/en-us/library/ee624082(d=printer).aspx

13 of 13 03.09.2016 15:49

Get started with developer testing tools
Last Updated: 8/4/2016

IN THIS ARTICLE

Visual Studio 2015 | Previous version

Use Visual Studio to define and run your unit tests to maintain code health, ensure code coverage, and to find errors and faults before your
customers do.

Create unit tests

Create unit tests and run them frequently to make sure your code is working properly.

1. Create a unit test project.

 ShareTeam Services > Test > Get started with developer testing tools …

Table of contents

Testing scenarios

Manual and exploratory testing

Performance testing

Continuous testing

Developer testing tools

Overview

Get started

Create Unit Tests command

Generate tests with IntelliTest

Run tests with Test Explorer

Determine code coverage

System test with Visual Studio

Create system tests with VS

Run system tests with VS

Submit bugs in VS

Submit bugs in TFS

IntelliTest reference manual

Test lab management

API reference for test tools

Free Visual Studio

Page 1 of 9 Assembled by RunPDF.com

https://www.visualstudio.com
javascript:void(0)
https://www.visualstudio.com/products/free-developer-offers-vs
https://www.visualstudio.com/docs/overview
https://www.visualstudio.com/docs/test/overview
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/overview
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/performance-testing/performance-testing
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/continuous-testing/continuous-testing
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/developer-testing/getting-started/getting-started-with-developer-testing
https://www.visualstudio.com/en-us/docs/test/developer-testing/getting-started/create-unit-tests-menu
https://msdn.microsoft.com/library/dn823749.aspx
https://msdn.microsoft.com/library/hh270865.aspx
https://msdn.microsoft.com/library/dd537628.aspx
https://msdn.microsoft.com/library/jj620889(v=vs.140).aspx
https://msdn.microsoft.com/library/jj620884(v=vs.140).aspx
https://msdn.microsoft.com/library/dd548714(v=vs.140).aspx
https://msdn.microsoft.com/library/dd293538(v=vs.140).aspx
https://msdn.microsoft.com/library/jj155803(v=vs.140).aspx
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-manual/introduction
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/lab-management/test-machines/install-configure-test-agents
https://msdn.microsoft.com/library/dd465178(v=vs.140).aspx
javascript:void(0);
https://msdn.microsoft.com/library/hh694602%28v=vs.120%29.aspx
http://www.runpdf.com

2. Name your project.

The project is added to your solution.

3. In the unit test project, add a reference to the project you want to test.

Page 2 of 9 Assembled by RunPDF.com

http://www.runpdf.com

4. Select the project that contains the code you'll test.

5. Code your unit test.

You can also create unit test method stubs with the Create Unit Tests command. To learn how, see Create unit test method stubs with the Create
Unit Tests command.

Page 3 of 9 Assembled by RunPDF.com

https://www.visualstudio.com/docs/test/developer-testing/getting-started/create-unit-tests-menu
http://www.runpdf.com

Run unit tests

1. Open Test Explorer.

2. Run unit tests.

You can see the unit tests that passed or failed in Test Explorer.

Generate unit tests with IntelliTest

When you run IntelliTest, you can easily see which tests are failing and add any necessary code to fix them. You can select which of the generated
tests to save into a test project to provide a regression suite. As you change your code, rerun IntelliTest to keep the generated tests in sync with your
code changes. To learn how, see Generating unit tests for your code with IntelliTest.

Page 4 of 9 Assembled by RunPDF.com

https://msdn.microsoft.com/library/dn823749.aspx
http://www.runpdf.com

Run unit tests with Test Explorer

Use Test Explorer to run unit tests from Visual Studio or third‐party unit test projects, group tests into categories, filter the test list, and create, save,
and run playlists of tests. You can also debug tests and analyze test performance and code coverage. To learn how, see Run unit tests with Test
Explorer.

Use code coverage to determine how much code is being tested

To determine what proportion of your project's code is actually being tested by coded tests such as unit tests, you can use the code coverage feature
of Visual Studio. To guard effectively against bugs, your tests should exercise or 'cover' a large proportion of your code. To learn how, see Use Code
Coverage to Determine How Much Code is being Tested.

Q & A

Q: Can I run unit tests in Visual Studio if I use a different unit test framework?

Page 5 of 9 Assembled by RunPDF.com

https://msdn.microsoft.com/library/hh270865.aspx
https://msdn.microsoft.com/library/dd537628.aspx
http://www.runpdf.com

A: Yes, use the plug‐in for that framework so that Visual Studio's test runner can work with that framework. Here are the unit testing framework plug‐
ins for Visual Studio that are available right now.

1. Use Visual Studio's extension manager to download your plug‐in.

2. Download your plug‐in from the Visual Studio Gallery under Tools/Testing, or search for it if you know the name.

3. Create a class library project.

Add the project to your solution.

Page 6 of 9 Assembled by RunPDF.com

http://go.microsoft.com/fwlink/?LinkID=246630
http://www.runpdf.com

4. In the class library project, run NuGet to install the plug‐in.

NuGet is an extension of Visual Studio that you can use to add and update libraries and tools for your projects.

5. Install your plug‐in. If you know the name, you can search for it online.

Page 7 of 9 Assembled by RunPDF.com

https://github.com/nuget/home
http://www.runpdf.com

The framework is referenced in your project.

6. In the class library project, add a reference to the project you want to test.

7. Select the project that contains the code you'll test.

8. Code your unit test.

Page 8 of 9 Assembled by RunPDF.com

http://www.runpdf.com

See also

Create Unit Tests command
Generate tests with IntelliTest
Run tests with Test Explorer
Determine code coverage
System test with Visual Studio
Create system tests with VS
Run system tests with VS

Help and support

Submit bugs through Connect, make suggestions on Uservoice, and send quick thoughts using the Send‐a‐Smile link in the Visual Studio, Team
Services, or TFS title bar. We look forward to your feedback.

Visual Studio
My Visual Studio

Manage Visual Studio

Marketplace

Integrate

Related Sites
Visual Studio documentation

MSDN Home

Channel 9

Azure

Visual Studio Blog

Products
Visual Studio

Visual Studio Team Services

Visual Studio Code

Download

Compare

How to Buy

Support
Get Support

Submit a Bug

Submit an Idea

Forums

United States ﴾English﴿ Contact us Jobs Privacy Terms of use Trademarks

© 2016 Microsoft

Is this page helpful?

YES NO

Page 9 of 9 Assembled by RunPDF.com

https://www.visualstudio.com/docs/test/developer-testing/getting-started/create-unit-tests-menu
https://msdn.microsoft.com/library/dn823749.aspx
https://msdn.microsoft.com/library/hh270865.aspx
https://msdn.microsoft.com/library/dd537628.aspx
https://msdn.microsoft.com/library/jj620889%28v=vs.140%29.aspx
https://msdn.microsoft.com/library/jj620884%28v=vs.140%29.aspx
https://msdn.microsoft.com/library/dd548714%28v=vs.140%29.aspx
https://connect.microsoft.com/visualstudio
http://visualstudio.uservoice.com/forums/121579-visual-studio
https://my.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=703828
https://marketplace.visualstudio.com
https://www.visualstudio.com/integrate
https://msdn.microsoft.com/library/vstudio
https://msdn.microsoft.com/
https://channel9.msdn.com/
https://azure.microsoft.com/
https://blogs.msdn.com/b/visualstudio/
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.visualstudio.com/products/visual-studio-team-services-vs
https://code.visualstudio.com/
https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs
https://www.visualstudio.com/products/how-to-buy-vs
https://www.visualstudio.com/support/support-overview-vs
https://connect.microsoft.com/visualstudio
https://visualstudio.uservoice.com/forums/121579-visual-studio
https://social.msdn.microsoft.com/forums/vstudio/en-us/home?category=visualstudio%2cvslanguages%2cvstfs%2cnetdevelopment%2cvsarch
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/support/support-overview-vs
https://visualstudio.com/news/visual-studio-hiring-overview-vs
https://go.microsoft.com/fwlink/?LinkID=264782&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=266231&clcid=0x409
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.runpdf.com

User acceptance testing
Last Updated: 8/30/2016

IN THIS ARTICLE

Team Services | TFS 2015

Today's faster development pace requires tools that enable test teams to more easily verify value based on business requirements, and the high
quality software demanded by customers. This type of testing is often referred to as user acceptance testing and is available as a feature in Visual
Studio Team Services and Team Foundation Server.

Typically you create a Test Suite using a formal requirement work item type. However, today’s agile teams often prefer to work from User Stories or
Product Backlog items as their requirements.

Before you start

You must have already created work items and a test plan. If not, follow the steps in:

 ShareTeam Services > Test > User acceptance testing with Visual Stu…

Table of contents

Testing scenarios

Manual and exploratory testing

Overview

Get started with manual testing

Advanced manual testing
techniques

User acceptance testing

Share steps between test cases

Repeat a test with different
data

Manage test results

Manual testing with Microsoft
Test Manager

Get started with exploratory
testing

Advanced exploratory testing
techniques

Exploratory testing with Microsoft
Test Manager

Performance testing

Continuous testing

Developer testing tools

Test lab management

API reference for test tools

Free Visual Studio

Page 1 of 4 Assembled by RunPDF.com

https://www.visualstudio.com
javascript:void(0)
https://www.visualstudio.com/products/free-developer-offers-vs
https://www.visualstudio.com/docs/overview
https://www.visualstudio.com/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing
https://msdn.microsoft.com/library/dd286655(v=vs.140).aspx
https://msdn.microsoft.com/library/dd997832(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://msdn.microsoft.com/library/dd380739(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/perform-exploratory-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/explore-workitems-exploratory-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://msdn.microsoft.com/library/hh191621(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/performance-testing/performance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/continuous-testing/continuous-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/lab-management/test-machines/install-configure-test-agents
https://msdn.microsoft.com/library/dd465178(v=vs.140).aspx
javascript:void(0);
https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog
http://www.runpdf.com

Create your backlog
Create a test plan

Assign and invite testers

Visual Studio Team Services makes it easy to assign testers to individual test cases. A typical scenario for user acceptance testing is the ability to not
just assign one tester to a test case ﴾see Search for and assign testers﴿ but assign multiple testers an entire set of tests.

This can also be accomplished by selecting the suite and choosing Assign testers to run all tests. This option also enables the sending of emails to
the testers assigned to the tests.

An important feature of user acceptance testing is that the testers may in fact be the business owners who created the original business
requirements.

Search for and assign testers

In scenarios where you have large development teams the ability search for an individual is also important. Choose Assign tester from the drop‐
down menu. In the shortcut menu, choose Assign testers to run all tests and select the testers you want to include.

Page 2 of 4 Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/create-a-test-plan
http://www.runpdf.com

Set the Send email option to send all of them a notification email.

Assign configurations to test suites and test cases

You will often want to verify requirements by configuration. Do this by opening the shortcut menu for a test case and choosing Assign
Configurations.

The test case will then be listed for each configuration. The test results will indicate which configuration was run.

Easily track results

A key principle of good user acceptance testing practice is to minimize the effort required to determine whether a requirement has been achieved.
There are two ways this can be achieved, you can focus on individual test runs and tests in the Test hub to see which failed or use the charts views
make it much easy and accessible to all members of Visual Studio Team Services makes this much easier.

Note: The dashboard display show here is also used for other types of testing such as continuous testing.

If you don't see the data or information you expect in the dashboard charts, verify that the columns in your data have been added to the Tests view.
For details see this blog post.

Page 3 of 4 Assembled by RunPDF.com

https://blogs.msdn.microsoft.com/visualstudioalm/2016/03/10/visual-studio-team-services-manual-testing-tips-charts-iterations-and-runs/
http://www.runpdf.com

Help and support

Submit bugs through Connect, make suggestions on Uservoice, and send quick thoughts using the Send‐a‐Smile link in the Visual Studio, Team
Services, or TFS title bar. We look forward to your feedback.

Visual Studio
My Visual Studio

Manage Visual Studio

Marketplace

Integrate

Related Sites
Visual Studio documentation

MSDN Home

Channel 9

Azure

Visual Studio Blog

Products
Visual Studio

Visual Studio Team Services

Visual Studio Code

Download

Compare

How to Buy

Support
Get Support

Submit a Bug

Submit an Idea

Forums

United States ﴾English﴿ Contact us Jobs Privacy Terms of use Trademarks

© 2016 Microsoft

Is this page helpful?

YES NO

Page 4 of 4 Assembled by RunPDF.com

https://connect.microsoft.com/visualstudio
http://visualstudio.uservoice.com/forums/121579-visual-studio
https://my.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=703828
https://marketplace.visualstudio.com
https://www.visualstudio.com/integrate
https://msdn.microsoft.com/library/vstudio
https://msdn.microsoft.com/
https://channel9.msdn.com/
https://azure.microsoft.com/
https://blogs.msdn.com/b/visualstudio/
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.visualstudio.com/products/visual-studio-team-services-vs
https://code.visualstudio.com/
https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs
https://www.visualstudio.com/products/how-to-buy-vs
https://www.visualstudio.com/support/support-overview-vs
https://connect.microsoft.com/visualstudio
https://visualstudio.uservoice.com/forums/121579-visual-studio
https://social.msdn.microsoft.com/forums/vstudio/en-us/home?category=visualstudio%2cvslanguages%2cvstfs%2cnetdevelopment%2cvsarch
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/support/support-overview-vs
https://visualstudio.com/news/visual-studio-hiring-overview-vs
https://go.microsoft.com/fwlink/?LinkID=264782&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=266231&clcid=0x409
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.runpdf.com

Track test status
Last Updated: 8/4/2016

IN THIS ARTICLE

Visual Studio 2015 | TFS 2015 | Previous version

Quickly view the status of your testing using lightweight charts. For example, find out how many test cases are ready to run, or how many tests are
passing and failing in each test suite. You can pin these charts to your home page, then all the team can see the progress at a glance.

 ShareTeam Services > Test > Track test status in Visual Studio Team…

Table of contents

Testing scenarios

Manual and exploratory testing

Overview

Get started with manual testing

Add, run, and track tests from
the Kanban board

Create test plans

Create test cases

Run manual tests

Track test status

Advanced manual testing
techniques

Manual testing with Microsoft
Test Manager

Get started with exploratory
testing

Advanced exploratory testing
techniques

Exploratory testing with Microsoft
Test Manager

Performance testing

Continuous testing

Developer testing tools

Test lab management

API reference for test tools

Free Visual Studio

Page 1 of 9 Assembled by RunPDF.com

https://www.visualstudio.com
javascript:void(0)
https://www.visualstudio.com/products/free-developer-offers-vs
https://www.visualstudio.com/docs/overview
https://www.visualstudio.com/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/create-a-test-plan
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/getting-started-with-manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://msdn.microsoft.com/library/dd380739(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/perform-exploratory-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/explore-workitems-exploratory-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://msdn.microsoft.com/library/hh191621(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/performance-testing/performance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/continuous-testing/continuous-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/lab-management/test-machines/install-configure-test-agents
https://msdn.microsoft.com/library/dd465178(v=vs.140).aspx
javascript:void(0);
https://msdn.microsoft.com/library/dn282443%28v=vs.120%29.aspx
http://www.runpdf.com

Track testing progress

Use test results charts to track how your testing is going. Choose from a fixed set of pre‐populated fields related to results. By default, a pie chart is
created for each test plan. This chart is grouped by the outcome field to show the latest results for all the tests in the test plan.

View this default chart from the Charts tab.

Page 2 of 9 Assembled by RunPDF.com

http://www.runpdf.com

Add your own charts for test results to visualize what's important for your team. If you already know how to add a chart, jump to the examples below
of charts that you can create.

1. Select the test plan or test suite for your chart in the Test plan tab. Then create a new chart.

2. Select the chart type. Based on the chart, configure the fields that you want to use to group by, or for rows and columns.

All charts roll up the information for any child test suites of the test plan or test suite that you selected.

3. Save the chart. Now it will be displayed in the charts tab for the test plan or test suite that you selected.

Test results examples
What's the test status for a specific test suite?

Select the test suite from the Test plan tab and add a test results pie chart. Group by outcome.

Page 3 of 9 Assembled by RunPDF.com

http://www.runpdf.com

What's the test status for user stories that my team's testing this sprint?

If you have created requirement‐based test suites in your test plan for your user stories, you can create a chart for this.

1. Group these requirement‐based test suites together in a static test suite.

2. Select this static test suite in the Test plan tab.

3. Add a test results stacked bar chart. Choose Suite as the rows pivot and Outcome as the columns pivot.

How many tests has each tester left to run?

Select your test plan from the Test plan tab and add a test results pivot table chart. Choose Tester as the rows pivot and Outcome as the columns
pivot.

Page 4 of 9 Assembled by RunPDF.com

http://www.runpdf.com

How can I check quality based on the configuration?

Use either a stacked bar chart or a pivot table chart. Choose Configuration as the rows pivot and Outcome as the columns pivot.

How can I track why tests are failing for my team?

For failure analysis, use either a stacked bar chart or a pivot table chart. Choose Tester for the rows and Failure type for the columns. ﴾Failure type for
test results can only be set using Microsoft Test Manager.﴿

How can I track the resolution for failing tests for my team?

For resolution analysis, use either a stacked bar chart or a pivot table chart. Choose Tester for the rows and Resolution for the columns. ﴾Resolution
type for test results can only be set using Microsoft Test Manager.﴿

Track test case status

Use test case charts to find out the progress of your test case authoring. The charts for test cases give you the flexibility to report on columns that you
add to the Tests tab. By default, test case fields are not added to the view in the Tests tab.

If you already know how to add a chart, jump to the examples below of charts that you can create for test cases.

1. Add any fields you want to use for your test case chart from the Tests tab with Column options. Then the fields will appear as choices in the
drop‐down lists for grouping for your test case charts.

2. Select the test plan or test suite for your chart in the Test plan tab. Then add a test case chart.

All charts roll up the information for any child test suites of the test plan or test suite that you selected.

3. Select the chart type. Based on the chart, configure the fields that you want to use to group by, for rows and columns, or the range ﴾trend
charts only﴿.

Page 5 of 9 Assembled by RunPDF.com

http://www.runpdf.com

You can't group by test suite for the test case charts.

4. Save the chart. Now it will be displayed in the charts tab for the test plan or test suite that you selected.

Test case examples
How can I track burndown for test case creation?

Use a stacked area trend chart to view the burndown for how many test cases are ready to be run. Choose State for the stack by field and Ascending
for the sort field.

How can I track burndown for automation status?

Use a stacked area trend chart to view the burndown for how many test cases have been automated. Choose Automation status for the stack by field
and Ascending for the sort field.

If multiple teams own test cases in my test plan, can I see how many each team owns and the priorities of the tests?

If your teams are organized by area path, then your can use a test case pie chart. Choose Area path for the group by field.

If you want to know the priorities of these tests, then create a stacked bar chart. Choose Area path for rows and priority for the columns.

How can I track test creation status by team members?

Test case owners are tracked by the Assigned to field. Use a stacked bar chart or a pivot table chart. Choose Assigned to for rows and status for the
columns.

Share charts on your team's dashboard

Pin a chart to your team's dashboard for all the team to view. Use the chart's context menu.

Page 6 of 9 Assembled by RunPDF.com

http://www.runpdf.com

You can configure the dashboard widget to show a range of chart types.

You must be a team administrator to do this, but team members with Stakeholder access can view the charts on the dashboard. Learn more about
dashboards. Or learn more about team administration.

Try this next

Control how long to keep test results

Q&A

Q: Can I view the recent test results for an individual test case?

A: Yes, select the test case within a test suite and then choose to view the test details pane.

Page 7 of 9 Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/report/dashboards
https://www.visualstudio.com/en-us/docs/work/scale/manage-team-assets
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
http://www.runpdf.com

View the recent test results for this test case.

Q: How is data shown in the charts for test cases that are in multiple test suites?

A: For test case charts, if a test case has been added to multiple test suites in a plan then it's only counted once.

For test result charts, each instance of a test that is run is counted for each of the test suites separately.

Q: Who can create charts?

A: You need at least a Basic access to create charts.

Q: How can I edit or delete a chart?

A: Select the option you want from the chart's context menu.

Q: How do I control how long I keep my test data?

A: Learn more here.

Help and support

Submit bugs through Connect, make suggestions on Uservoice, and send quick thoughts using the Send‐a‐Smile link in the Visual Studio, Team
Services, or TFS title bar. We look forward to your feedback.

Visual Studio
My Visual Studio

Manage Visual Studio

Marketplace

Integrate

Related Sites
Visual Studio documentation

MSDN Home

Channel 9

Azure

Visual Studio Blog

Products
Visual Studio

Visual Studio Team Services

Visual Studio Code

Download

Compare

How to Buy

Support
Get Support

Submit a Bug

Submit an Idea

Forums

Page 8 of 9 Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
https://connect.microsoft.com/visualstudio
http://visualstudio.uservoice.com/forums/121579-visual-studio
https://my.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=703828
https://marketplace.visualstudio.com
https://www.visualstudio.com/integrate
https://msdn.microsoft.com/library/vstudio
https://msdn.microsoft.com/
https://channel9.msdn.com/
https://azure.microsoft.com/
https://blogs.msdn.com/b/visualstudio/
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.visualstudio.com/products/visual-studio-team-services-vs
https://code.visualstudio.com/
https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs
https://www.visualstudio.com/products/how-to-buy-vs
https://www.visualstudio.com/support/support-overview-vs
https://connect.microsoft.com/visualstudio
https://visualstudio.uservoice.com/forums/121579-visual-studio
https://social.msdn.microsoft.com/forums/vstudio/en-us/home?category=visualstudio%2cvslanguages%2cvstfs%2cnetdevelopment%2cvsarch
http://www.runpdf.com

United States ﴾English﴿ Contact us Jobs Privacy Terms of use Trademarks

© 2016 Microsoft

Is this page helpful?

YES NO

Page 9 of 9 Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/support/support-overview-vs
https://visualstudio.com/news/visual-studio-hiring-overview-vs
https://go.microsoft.com/fwlink/?LinkID=264782&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=266231&clcid=0x409
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.runpdf.com

Run manual tests
Last Updated: 8/4/2016

IN THIS ARTICLE

Visual Studio 2015 | TFS 2015 | Previous version

Run your manual tests and record the test results for each test step using Microsoft Test Runner. If you find an issue when testing, use Test Runner to
create a bug. Test steps, screenshots, and comments are automatically included in the bug.

You just need Basic access to run tests that have been assigned to you with Visual Studio Team Services. Learn more about the access that you need
for more advanced testing features.

1. If you haven't already, create your manual tests.

2. Select a test from a test suite and run it.

 ShareTeam Services > Test > Run manual tests in Visual Studio Team…

Table of contents

Testing scenarios

Manual and exploratory testing

Overview

Get started with manual testing

Add, run, and track tests from
the Kanban board

Create test plans

Create test cases

Run manual tests

Track test status

Advanced manual testing
techniques

Manual testing with Microsoft
Test Manager

Get started with exploratory
testing

Advanced exploratory testing
techniques

Exploratory testing with Microsoft
Test Manager

Performance testing

Continuous testing

Developer testing tools

Test lab management

API reference for test tools

Free Visual Studio

Page 1 of 7 Assembled by RunPDF.com

https://www.visualstudio.com
javascript:void(0)
https://www.visualstudio.com/products/free-developer-offers-vs
https://www.visualstudio.com/docs/overview
https://www.visualstudio.com/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/create-a-test-plan
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/getting-started-with-manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://msdn.microsoft.com/library/dd380739(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/perform-exploratory-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/explore-workitems-exploratory-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://msdn.microsoft.com/library/hh191621(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/performance-testing/performance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/continuous-testing/continuous-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/lab-management/test-machines/install-configure-test-agents
https://msdn.microsoft.com/library/dd465178(v=vs.140).aspx
javascript:void(0);
https://msdn.microsoft.com/library/dd286725%28v=vs.120%29.aspx
https://www.visualstudio.com/products/visual-studio-online-basic-vs
https://www.visualstudio.com/pricing/visual-studio-online-pricing-vs
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/getting-started-with-manual-testing#test-cases
http://www.runpdf.com

Microsoft Test Runner opens and runs in a new browser.

3. Start the app that you want to test. Your app doesn't have to run on the same computer as Test Runner. You just use Test Runner to record
which test steps pass or fail while you manually run a test. For example, you might run Test Runner on a desktop computer and run your
Windows 8 store app that you are testing on a Windows 8 tablet.

4. Mark each test step as either passed or failed based on the expected results. If a test step fails, you can enter a comment on why it failed.

Page 2 of 7 Assembled by RunPDF.com

http://www.runpdf.com

5. Create a bug to describe what failed.

The steps and your comments are automatically added to the bug. Also, the test case is linked to the bug.

If Test Runner is running in an Internet Explorer 11 or a Chrome window, you can copy a screenshot from the clipboard directly into the bug.

6. You can see any bugs that you have reported during your test session.

7. When you've run all your tests, save the results and close Test Runner. Now, all the test results are stored in Visual Studio Team Services.

8. View the testing status for your test suite.

Page 3 of 7 Assembled by RunPDF.com

http://www.runpdf.com

You see the most recent results for each test.

Try this next

View your test progress with lightweight charts
Control how long to keep test results

Q&A

Q: How do I rerun a test?

A: Just select any test and choose Run.

Q: Can I run all the tests in a test suite together?

A: Yes, select a test suite and choose Run. This runs all the active tests in the test suite. If you haven't run a test yet, its state is active. You can reset the
state of a test to active if you want to rerun it.

Q: Can I choose a build to run tests against?

A: Yes, Choose Run and then select Run with options. Any bug filed during the run will automatically be associated with the selected build, and the
test outcome will be published against that build.

Q: I want to do some exploratory testing before I create manual test cases. Can Test Runner help with this?

A: Not from the Test hub. But if you use Microsoft Test Manager, it will record your actions, screenshots and other data while you're exploring your
app. If you create a bug, all this data is included automatically.

Q: Can I add a screenshot to the test results when I am running a test?

A: Yes, take a screenshot, save it to a file and add the attachment. The file is stored with the test results.

Page 4 of 7 Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
https://msdn.microsoft.com/library/hh191621.aspx
http://www.runpdf.com

Q: Can I add a screenshot to a bug when I am running a test?

A: Yes, if Test Runner is running in an Internet Explorer 11 or a Chrome window, you can copy a screenshot from the clipboard directly.

Q: Can I fix my test steps while I'm running a test?

A: Yes, if you have the Test Manager for Visual Studio Team Services. You can insert, move, or delete steps. Or you can edit the text itself. Use the edit
icon next to the test step number to do this.

The tool to edit the test steps is shown.

Q: Can I collect additional data while I'm running a test?

Page 5 of 7 Assembled by RunPDF.com

http://www.runpdf.com

A: If you use Microsoft Test Manager to run your tests, you can collect user actions, system logs, screen and audio recordings and other additional
data. If you're using Visual Studio 2015, Visual Studio 2013, or Visual Studio 2012 Update 3, you can run a test using Microsoft Test Manager from the
Test hub. ﴾The most recently installed version of MTM will launch.﴿

Q: Can I capture on‐demand image actions?

A: Yes, in addition to screenshots and screen recordings you can capture an on‐demand image action log from your web apps. You specify the
browser window on which to capture your actions � all actions on that window ﴾any existing or new tabs you open in that window﴿ or any new child
browser windows you launch, will automatically be captured and correlated against the steps being tested in the Web Runner. These image action
logs are then added to any bugs you file during the run and also attached to the current test result.

Q: How do I control how long I keep my test data?

A: Learn more here.

Help and support

Submit bugs through Connect, make suggestions on Uservoice, and send quick thoughts using the Send‐a‐Smile link in the Visual Studio, Team
Services, or TFS title bar. We look forward to your feedback.

Visual Studio
My Visual Studio

Manage Visual Studio

Marketplace

Integrate

Related Sites
Visual Studio documentation

MSDN Home

Channel 9

Azure

Visual Studio Blog

Products
Visual Studio

Visual Studio Team Services

Visual Studio Code

Download

Compare

How to Buy

Support
Get Support

Submit a Bug

Submit an Idea

Forums

United States ﴾English﴿ Contact us Jobs Privacy Terms of use Trademarks

© 2016 Microsoft

Is this page helpful?

Page 6 of 7 Assembled by RunPDF.com

https://msdn.microsoft.com/library/jj635157.aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
https://connect.microsoft.com/visualstudio
http://visualstudio.uservoice.com/forums/121579-visual-studio
https://my.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=703828
https://marketplace.visualstudio.com
https://www.visualstudio.com/integrate
https://msdn.microsoft.com/library/vstudio
https://msdn.microsoft.com/
https://channel9.msdn.com/
https://azure.microsoft.com/
https://blogs.msdn.com/b/visualstudio/
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.visualstudio.com/products/visual-studio-team-services-vs
https://code.visualstudio.com/
https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs
https://www.visualstudio.com/products/how-to-buy-vs
https://www.visualstudio.com/support/support-overview-vs
https://connect.microsoft.com/visualstudio
https://visualstudio.uservoice.com/forums/121579-visual-studio
https://social.msdn.microsoft.com/forums/vstudio/en-us/home?category=visualstudio%2cvslanguages%2cvstfs%2cnetdevelopment%2cvsarch
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/support/support-overview-vs
https://visualstudio.com/news/visual-studio-hiring-overview-vs
https://go.microsoft.com/fwlink/?LinkID=264782&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=266231&clcid=0x409
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.runpdf.com

YES NO

Page 7 of 7 Assembled by RunPDF.com

http://www.runpdf.com

