Unit Test Your Code

Unit Test Basics

Generate unit tests for your code with IntelliTest

Run unit tests with Test Explorer

Creating and Running Unit Tests for Windows Store Apps

Writing Unit Tests
Creating and Running Unit Tests for Managed Code

Quick Start Test Driven Development with Test Explorer

Isolating Code Under Test with Microsoft Fakes

How To Create a Data-Driven Unit Test

Use Ul Automation To Test Your Code

Walkthrough Creating, Editing and Maintaining a Coded Ul Test
Test Windows Phone 8.1 Apps with Coded Ul Tests

Creating a Data-Driven Coded Ul Test
Get started with developer testing tools

User acceptance testing

Track test status

Run manual tests

17
25
36
42
43
53
62
67
72
89
99
119
132
141
145
154

Unit Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd264975(d=printer).aspx

Unit Test Your Code

Visual Studio 2015

Unit tests give developers and testers a quick way to look for logic errors in the methods of classes in Visual C#, Visual Basic,
and Visual C++ projects.

The unit test tools include:

1. Test Explorer. Test Explorer lets you run unit tests and view their results. Test Explorer can use any unit test
framework, including a third-party framework, that has an adapter for the Explorer.

2. Microsoft unit test framework for managed code. The Microsoft unit test framework for managed code is
installed with Visual Studio and provides a framework for testing .NET code.

3. Microsoft unit test framework for C+ +. The Microsoft unit test framework for C+ + is installed with Visual Studio
and provides a framework for testing native code.

4. Code coverage tools. You can determine the amount of product code that your unit tests exercise from one
command in Test Explorer.

5. Microsoft Fakes isolation framework. The Microsoft Fakes isolation framework can create substitute classes and
methods for production and system code that create dependencies in the code under test. By implementing the fake
delegates for a function, you control the behavior and output of the dependency object.

You can also use IntelliTest to explore your .NET code to generate test data and a suite of unit tests. For every statement in
the code, a test input is generated that will execute that statement. A case analysis is performed for every conditional branch
in the code.

Key tasks

Use the following topics to help with understanding and creating unit tests:

Tasks Associated Topics

Quick starts and walkthroughs: Use the following topics to learn

unit testing in Visual Studio from code examples. ® Walkthrough: Creating and Running Unit

Tests for Managed Code

® Quick Start: Test Driven Development
with Test Explorer

® Unit testing existing C++ applications
with Test Explorer

® Unit testing native code with Test
Explorer

lof4 02.09.2016 13:48

Unit Test Your Code

20f4

https://msdn.mi crosoft.com/en-ug/library/dd264975(d=printer).aspx

Unit testing with Test Explorer: Learn how Test Explorer can help

create more productive and efficient unit tests.

Unit testing managed code:

Unit testing C++ code

Isolating unit tests

Use code coverage to identify what proportion of your
project’s code is being tested using unit tests: Learn about the
code coverage feature of Visual Studio Application Lifecycle
Management testing tools.

Perform stress and performance analysis by using load tests
for your unit tests: You can create a load test and add your unit
tests to it to help isolate performance and stress issues in your
application.

[# Note

Creating and using load tests requires Visual Studio Enterprise.

Set and enforce quality gates: You can create quality gates to
enforce that tests are run before code is checked in to help ensure
the quality of the code.

Extend the unit test type: You can add functionality to your tests
that might not be in the Unit Test Framework. For example, you can

add a test property that specifies if a test should run as a normal

site.

user or not. Or you can extend the framework to add row attributes

to a method and use the data in that row inside the test.

Unit Test Basics

Create a unit test project

Run unit tests with Test Explorer

Install third-party unit test frameworks
Upgrading Unit Tests from Visual Studio
2010

Writing Unit Tests for the .NET
Framework with the Microsoft Unit Test
Framework for Managed Code

Writing Unit tests for C/C++ with the
Microsoft Unit Testing Framework for
C++

Isolating Code Under Test with Microsoft
Fakes

Using Code Coverage to Determine How
Much Code is being Tested

€2985d15-60a7-4177-93b4-
f986c2936337
03cc073e-9bdf-4530-
ae46-504a51884594
3d6128d2-82b0-42fc-
bda2-23a8aa03be07

Set and Enforce Quality Gates

For sample code of how to extend the unit test
framework, see the following Microsoft Web

02.09.2016 13:48

Unit Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd264975(d=printer).aspx

Set testing options: For example, you can specify where test Configure unit tests by using a .runsettings file
results are stored.

Related tasks

Reviewing Test Results in Microsoft Test Manager
Describes test results and ways to work with them, including how to view, save, and delete them.
Running System Tests Using Microsoft Visual Studio

Provides links to information about using Visual Studio as opposed to using Microsoft Test Manager to run automated
tests.

Reference

Microsoft.VisualStudio.TestTools.UnitTesting
Describes the UnitTesting namespace, which provides attributes, exceptions, asserts, and other classes that support
unit testing.

Microsoft.VisualStudio.TestTools.UnitTesting.Web
Describes the UnitTesting.Web namespace, which extends the UnitTesting namespace by providing support for
ASP.NET and Web service unit tests.

External resources

Videos
Channel 9: Unit testing your Windows Store apps built using XAML

Forums
Visual Studio Unit Testing

Guidance
Testing for Continuous Delivery with Visual Studio 2012 — Chapter 2: Unit Testing: Testing the Inside

30f4 02.09.2016 13:48

Unit Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd264975(d=printer).aspx

Reference

Content Index for Unit Tests

See Also

Improve Code Quality
Testing the application

© 2016 Microsoft

4 0of 4 02.09.2016 13:48

Unit Test Basics https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

1of 12

Unit Test Basics

Visual Studio 2015

Updated: January 7, 2016

Check that your code is working as expected by creating and running unit tests. It's called unit testing because you break
down the functionality of your program into discrete testable behaviors that you can test as individual units. Visual Studio
Test Explorer provides a flexible and efficient way to run your unit tests and view their results in Visual Studio. Visual Studio
installs the Microsoft unit testing frameworks for managed and native code. Use a unit testing framework to create unit tests,
run them, and report the results of these tests. Rerun unit tests when you make changes to test that your code is still working
correctly. When you use Visual Studio Enterprise, you can run tests automatically after every build.

Unit testing has the greatest effect on the quality of your code when it's an integral part of your software development
workflow. As soon as you write a function or other block of application code, create unit tests that verify the behavior of the
code in response to standard, boundary, and incorrect cases of input data, and that check any explicit or implicit
assumptions made by the code. With test driven development, you create the unit tests before you write the code, so you use
the unit tests as both design documentation and functional specifications.

You can quickly generate test projects and test methods from your code, or manually create the tests as you need them.
When you use IntelliTest to explore your .NET code, you can generate test data and a suite of unit tests. For every statement
in the code, a test input is generated that will execute that statement. Find out how to generate unit tests for your code.

Test Explorer can also run third-party and open source unit test frameworks that have implemented Test Explorer add-on
interfaces. You can add many of these frameworks through the Visual Studio Extension Manager and the Visual Studio
gallery. See Install third-party unit test frameworks

Quick starts

The MyBank Solution example

® (Create unit test projects and test methods

Write your tests
® Run tests in Test Explorer

® Run and view tests

Unit testing overview

Quick starts

For an introduction to unit testing that takes you directly into coding, see one of these topics:

® Walkthrough: Creating and Running Unit Tests for Managed Code

03.09.2016 15:37

Unit Test Basics https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

® Quick Start: Test Driven Development with Test Explorer

® Unit testing native code with Test Explorer

The MyBank Solution example

In this topic, we use the development of a fictional application called MyBank as an example. You don't need the actual
code to follow the explanations in this topic. Test methods are written in C# and presented by using the Microsoft Unit
Testing Framework for Managed Code, However, the concepts are easily transferred to other languages and frameworks.

Eﬂ Solution ‘MyBank' (4 projects)
a & Accounts
K Properties
5B References
£ Accountinfocs
o] CheckingAccount.cs
{"-l [Account.cs
AccountsTests
y Properties
W References
u-0 Accounts
o8 Microsoft VisualStudio QualityTools.Unit.,,
0 System
£y AccountinfoTests.cs
) CheckingAccountTests.cs
BankDh
BandDbTests

v v v v v v

- v
Ml - -

Our first attempt at a design for the MyBank application includes an accounts component that represents an individual
account and its transactions with the bank, and a database component that represents the functionality to aggregate and
manage the individual accounts.

We create a MyBank solution that contains two projects:

® Accounts

® BankDb

Our first attempt at designing the Accounts project contain a class to hold basic information about an account, an

interface that specifies the common functionality of any type of account, like depositing and withdrawing assets from the
account, and a class derived from the interface that represents a checking account. We begin the Accounts projects by
creating the following source files:

® AccountInfo.cs defines the basic information for an account.

® TAccount.cs defines a standard IAccount interface for an account, including methods to deposit and withdraw

2 of 12 03.09.2016 15:37

Unit Test Basics https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

assets from an account and to retrieve the account balance.
® CheckingAccount.cs contains the CheckingAccount class that implements the IAccounts interface for a

checking account.

We know from experience that one thing a withdrawal from a checking account must do is to make sure that the amount
withdrawn is less than the account balance. So we override the IAccount.Withdaw method in CheckingAccount with a
method that checks for this condition. The method might look like this:

C#

public void Withdraw(double amount)

{
if(m_balance >= amount)
{
m_balance -= amount;
}
else
{
throw new ArgumentException(amount, "Withdrawal exceeds balance!"™)
}
}

Now that we have some code, it's time for testing.

Create unit test projects and test methods

It is often quicker to generate the unit test project and unit test stubs from your code. Or you can choose to create the
unit test project and tests manually depending on your requirements.

Generate unit test project and unit test stubs

1. From the code editor window, right-click and choose Create Unit Tests from the context menu.

public class Checkingfccount

i

double m_balance;

public niid Withdraw{doub Quick Actions... Ctrl+,

1 Fename.. Ctri=R, Ctri+R
if {m_balance »>= amou ; :
{ Organize Usings 3

bal =

} i A i ¥ Show on Code Map Ctrl+'
else Find All References on Code Map
{ Show Related ltems on Code Map [

throw new Arguesme

b

3of 12

Create Unit Tests

03.09.2016 15:37

Unit Test Basics

https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

2. Click OK to accept the defaults to create your unit tests, or change the values used to create and name the unit test
project and the unit tests. You can select the code that is added by default to the unit test methods.

4 of 12

Test Framework:

Test Project:

MName Format for Test Project
MNamespace:

Output File:

Mame Format for Test Class:

Mame Format for Test Method:

Code for Test Method:

CheckingAccountTests.cs* & X

M5Test

<Mew Test Project:
[Project]Tests
[Mamespace].Tests
<Mew Test File>
[Class]Tests

[Method]Test

‘Assert failure

AccountsTests

using Accounts;
using System;

using System.Lyng;
using System.Text;

[namespace Accounts.Tests

1

- I"fs Accounts.Tests.Check
= wsing Microsoft.VisualStudio.TestTools.UnitTesting;

using System.Collections.Generic;

using System.Threading.Tasks;

{
[TestClass()]
0 references
=] public class CheckingAccountTests
1{
[TestMethod()]
0 references
= public void WithdrawTest()|
{
Assert.Fail();
¥
}

- | © WithdrawTest()

co@e-seam|op -
Search Solution Explorer (Ctri+)
fa] Solution "MyBank' (2 projects)
4 [c¥] Accounts
b J Properties
P =B References
P CheckingfAccount.cs
4 T AccountsTests
I J& Properties
4 u-B References
-0 Analyzers
=B Accounts
-0 MicrosoftVisualStudic.QualityTo..
=0 System
b € CheckinghccountTests.cs

4. Now jump ahead to learn how to add code to the unit test methods to make your unit test meaningful, and any
extra unit tests that you might want to add to thoroughly test your code.

Create your unit test project and unit tests manually

A unit test project usually mirrors the structure of a single code project. In the MyBank example, you add two unit test

03.09.2016 15:37

Unit Test Basics https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

projects named AccountsTests and BankDbTests to the MyBanks solution. The test project names are arbitrary, but
adopting a standard naming convention is a good idea.

To add a unit test project to a solution:

1. On the File menu, choose New and then choose Project (Keyboard Ctrl + Shift + N).

2. On the New Project dialog box, expand the Installed node, choose the language that you want to use for your test
project, and then choose Test.

3. To use one of the Microsoft unit test frameworks, choose Unit Test Project from the list of project templates.
Otherwise, choose the project template of the unit test framework that you want to use. To test the Accounts
project of our example, you would name the project AccountsTests.

& Warning

Not all third-party and open source unit test frameworks provide a Visual Studio project template. Consult the
framework document for information about creating a project.
4. In your unit test project, add a reference to the code project under test, in our example to the Accounts project.
To create the reference to the code project:
a. Select the project in Solution Explorer.
b. On the Project menu, choose Add Reference.

¢. On the Reference Manager dialog box, open the Solution node and choose Projects. Select the code
project name and close the dialog box.

Each unit test project contains classes that mirror the names of the classes in the code project. In our example, the
AccountsTests project would contain the following classes:

® AccountInfoTests class contains the unit test methods for the AccountInfo class in the BankAccount project

® CheckingAccountTests class contains the unit test methods for CheckingAccount class.

Write your tests

The unit test framework that you use and Visual Studio IntelliSense will guide you through writing the code for your unit
tests for a code project. To run in Test Explorer, most frameworks require that you add specific attributes to identify unit
test methods. The frameworks also provide a way—usually through assert statements or method attributes—to indicate
whether the test method has passed or failed. Other attributes identify optional setup methods that are at class
initialization and before each test method and teardown methods that are run after each test method and before the class
is destroyed.

5of 12 03.09.2016 15:37

Unit Test Basics

6 of 12

The AAA (Arrange, Act, Assert) pattern is a common way of writing unit tests for a method under test.

® The Arrange section of a unit test method initializes objects and sets the value of the data that is passed to the

method under test.
® The Act section invokes the method under test with the arranged parameters.

® The Assert section verifies that the action of the method under test behaves as expected.

To test the CheckingAccount.Withdraw method of our example, we can write two tests: one that verifies the standard

behavior of the method, and one that verifies that a withdrawal of more than the balance will fail. In the
CheckingAccountTests class, we add the following methods:

C#
[TestMethod]
public void Withdraw_ValidAmount_ChangesBalance()
{
// arrange
double currentBalance = 10.90;
double withdrawal = 1.0;
double expected = 9.0;
var account = new CheckingAccount("JohnDoe", currentBalance);
// act
account.Withdraw(withdrawal);
double actual = account.Balance;
// assert
Assert.AreEqual(expected, actual);
}
[TestMethod]

[ExpectedException(typeof (ArgumentException))]
public void Withdraw_AmountMoreThanBalance Throws()

{
// arrange
var account = new CheckingAccount("John Doe", 10.0);
// act
account.Withdraw(20.0);
// assert is handled by the ExpectedException
}

https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

Note that Withdraw_ValidAmount_ChangesBalance uses an explicit Assert statement to determine whether the test
method passes or fails, while Withdraw_AmountMoreThanBalance_Throws uses the ExpectedException attribute to
determine the success of the test method. Under the covers, a unit test framework wraps test methods in try/catch

statements. In most cases, if an exception is caught, the test method fails and the exception is ignored. The
ExpectedException attribute causes the test method to pass if the specified exception is thrown.

For more information about the Microsoft Unit Testing Frameworks, see one of the following topics:

03.09.2016 15:37

Unit Test Basics https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

® \Writing Unit Tests for the .NET Framework with the Microsoft Unit Test Framework for Managed Code

® Writing Unit tests for C/C++ with the Microsoft Unit Testing Framework for C++

Set timeouts for unit tests

To set a timeout on an individual test method:

W

To set the timeout to the maximum allowed:

o

[TestMethod]
[Timeout(TestTimeout.Infinite)] // Milliseconds

public void My Test ()

{ ...
}

Run tests in Test Explorer

When you build the test project, the tests appear in Test Explorer. If Test Explorer is not visible, choose Test on the Visual
Studio menu, choose Windows, and then choose Test Explorer.

7 of 12 03.09.2016 15:37

Unit Test Basics https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

Test Explorer * 0 ¥
S - seoo p-

Rurn All | Run,.. =

4 Failed Tests (1)

fﬂj‘l Accountinfo_GetAccountinfo_InvalidData

4 Skipped Tests (1)

1 Accountinfo_AddCheckingAcoount_InvalidData
4 Passed Tests (2)

#) Accountinfo_AddCheckingAccount_ValidData =1ms
®) Accountinfo_AddSavingsAccount_ValidData < T g
4 Mot Run Tests (1)

i) Accountinfo_CreateAccount_lnvalidData

AccountInfo_GetAccountInfo InvalidData
Source! UnitTestl.cs line 11

g Test Failed - Accountinfo_GetAccountinfo_InvalidData

Message: Assert.IsTrue failed. "1234° is not an authorized
account

Elapsed time: 216 ms

4 StackTrace:

AecountinfoTests. Accountlnfe_GetAccountnfo_[n..

As you run, write, and rerun your tests, the default view of Test Explorer displays the results in groups of Failed Tests,

Passed Tests, Skipped Tests and Not Run Tests. You can choose a group heading to open the view that displays all
them tests in that group.

You can also filter the tests in any view by matching text in the search box at the global level or by selecting one of the
pre-defined filters. You can run any selection of the tests at any time. The results of a test run are immediately apparent in
the pass/fail bar at the top of the explorer window. Details of a test method result are displayed when you select the test.

Run and view tests

The Test Explorer toolbar helps you discover, organize, and run the tests that you are interested in.

|7| Run tests after every build | Search / filter tests

r[Choose a category for grouping tests | Chnuse a filter category
[Dillet i —— Eﬁ

{,‘;_ l{: & E Path:"C\ProjectsiMyBank|AccountInfoTests 2 "]

E Fun All | Fur.,

L| Choose the tests to run.

| Run all tests

You can choose Run All to run all your tests, or choose Run to choose a subset of tests to run. After you run a set of
tests, a summary of the test run appears at the bottom of the Test Explorer window. Select a test to view the details of

that test in the bottom pane. Choose Open Test from the context menu (Keyboard: F12) to display the source code for
the selected test.

8 of 12 03.09.2016 15:37

Unit Test Basics https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

If individual tests have no dependencies that prevent them from being run in any order, turn on parallel test execution
-—

with the ®= toggle button on the toolbar. This can noticeably reduce the time taken to run all the tests.

Run tests after every build

& Warning
Running unit tests after every build is supported only in Visual Studio Enterprise.

To run your unit tests after each local build, choose Test on the standard menu, choose Run Tests After
Build on the Test Explorer toolbar.

Filter and group the test list

When you have a large number of tests, you can Type in Test Explorer search box to filter the list by the specified string.
You can restrict your filter event more by choosing from the filter list.

Test Explorer » I X

S ": = E Project" 2 -
I3 Streami. fullmame:UnitTestl" W
fullname:"UnitTest2" —| Choose a recent filter
Aun All | R puliName: TestMethod”
4 Mot Run... Add asearch filter

11 Choose a filter category
O Test.. Tralt Project Error Message — | |and then enter a value.

O Test.. File Path Fully Qualified Name

Output Outcome

[z - | 10 group your tests by category, choose the Group By button.

For more information, see Run unit tests with Test Explorer

Q&A

Q: How do I debug unit tests?

A: Use Test Explorer to start a debugging session for your tests. Stepping through your code with the Visual Studio
debugger seamlessly takes you back and forth between the unit tests and the project under test. To start debugging:

9of 12 03.09.2016 15:37

Unit Test Basics https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

1. In the Visual Studio editor, set a breakpoint in one or more test methods that you want to debug.

£ Note

Because test methods can run in any order, set breakpoints in all the test methods that you want to debug.
2.In Test Explorer, select the test methods and then choose Debug Selected Tests from the shortcut menu.
Learn more details about debugging unit tests.

Q: If I'm using TDD, how do I generate code from my tests?

A: Use IntelliSense to generate classes and methods in your project code. Write a statement in a test method that calls the
class or method that you want to generate, then open the IntelliSense menu under the call. If the call is to a constructor of
the new class, choose Generate new type from the menu and follow the wizard to insert the class in your code project. If
the call is to a method, choose Generate new method from the IntelliSense menu.

accountinfo.Changefddressinewfddress);

b
1

'@ Generate method stub for 'ChangeAddress' in ‘MyBank, Accountinfo'

Q: Can I create unit tests that take multiple sets of data as input to run the test?

A: Yes. Data-driven test methods let you test a range of values with a single unit test method. Use a DataSource attribute
for the test method that specifies the data source and table that contains the variable values that you want to test. In the
method body, you assign the row values to variables using the TestContext.DataRow[ColumnName] indexer.

[Note

These procedures apply only to test methods that you write by using the Microsoft unit test framework for managed
code. If you're using a different framework, consult the framework documentation for equivalent functionality.

For example, assume we add an unnecessary method to the CheckingAccount class that is named AddIntegerHelper.
AddIntegerHelper adds two integers.

To create a data-driven test for the AddIntegerHelper method, we first create an Access database named
AccountsTest.accdb and a table named AddIntegerHelperData. The AddIntegerHelperData table defines columns
to specify the first and second operands of the addition and a column to specify the expected result. We fill a number of
rows with appropriate values.

C#

10 of 12 03.09.2016 15:37

Unit Test Basics https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

[DataSource(
@"Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Projects\MyBank\TestData

\AccountsTest.accdb",
"AddIntegerHelperData"

)]

[TestMethod()]

public void AddIntegerHelper_DataDrivenValues_AllShouldPass()

{
var target = new CheckingAccount();
int x = Convert.ToInt32(TestContext.DataRow["FirstNumber"]);
int y = Convert.ToInt32(TestContext.DataRow["SecondNumber"]);
int expected = Convert.ToInt32(TestContext.DataRow["Sum"]);
int actual = target.AddIntegerHelper(x, y);
Assert.AreEqual(expected, actual);

}

The attributed method runs once for each row in the table. Test Explorer reports a test failure for the method if any of the
iterations fail. The test results detail pane for the method shows you the pass/fail status method for each row of data.

Learn more about data-driven unit tests.

Q: Can I view how much of my code is tested by my unit tests?

A: Yes. You can determine the amount of your code that is actually being tested by your unit tests by using the Visual
Studio code coverage tool. Native and managed languages and all unit test frameworks that can be run by the Unit Test
Framework are supported.

You can run code coverage on selected tests or on all tests in a solution. The Code Coverage Results window displays the
percentage of the blocks of product code that were exercised by line, function, class, namespace and module.

To run code coverage for test methods in a solution, choose Tests on the Visual Studio menu and then choose Analyze
code coverage

Coverage results appear in the Code Coverage Results window.

Code Coverage Results * 0 x
userl_FABLAB-0529 2012-06-04 10.40.. * 1 G 71 x
Hierarchy ~ Mot Covered (Blocks) Mot Covered (% Blocks)
4 %z pecountinfoTests 3 25.00%
@ Accountlnfo_GetAccount_ValidDatal) 4] 0.00%
@ AccountInfo_GetAccount_Invalic Data() 0 0.00%
@ Accountinfo_AddSavingsAccount_ValidDatal) 0 0.00%
@ AccountInfo_addCheckingAccount_ValidDa... 0 0.005%

Learn more about code coverage .

Q: How can I test methods in my code that have external dependencies?

11 of 12 03.09.2016 15:37

Unit Test Basics

https://msdn.mi crosoft.com/en-ug/li brary/hh694602(d=printer).aspx

A: Yes. If you have Visual Studio Enterprise, Microsoft Fakes can be used with test methods that you write by using unit

test frameworks for managed code.

Microsoft Fakes uses two approaches to create substitute classes for external dependencies.

1. Stubs generate substitute classes derived from the parent interface of the target dependency class. Stub methods
can be substituted for public virtual methods of the target class.

2. Shims use runtime instrumentation to divert calls to a target method to a substitute shim method for non-virtual

methods.

In both approaches, you use the generated delegates of calls to the dependency method to specify the behavior that you

want in the test method.

Learn more about isolating unit test methods with Microsoft Fakes.

Q: Can I use other unit test frameworks to create unit tests?

A: Yes, follow these steps to find and install other frameworks. After you restart Visual Studio, reopen your solution to
create your unit tests, and then select your installed frameworks here:

Test Framework:

Test Project:

Mame Format for Test Project:
Mamespace:

Output File:

Mame Format for Test Class:
Mame Format for Test Method:

Code for Test Method:

Create Unit Tests

MSTest

|

M5Test

xllnit.net 2.0

MUnit2
MUnit

[Marmespace]. Tests
<Mew Test File=
[Class]Tests
[Method]Test

Assert failure

0K

|| Cancel

Your unit test stubs will be created using the selected framework.

© 2016 Microsoft

12 of 12

03.09.2016 15:37

Generate unit tests for your code with Intelli Test https://msdn.mi crosoft.comyen-ug/library/dn823749(d=printer).aspx

l1of 8

Generate unit tests for your code with
IntelliTest

Visual Studio 2015

Updated: October 5, 2015

IntelliTest explores your .NET code to generate test data and a suite of unit tests. For every statement in the code, a test
input is generated that will execute that statement. A case analysis is performed for every conditional branch in the code. For
example, if statements, assertions, and all operations that can throw exceptions are analyzed. This analysis is used to
generate test data for a parameterized unit test for each of your methods, creating unit tests with high code coverage.

When you run IntelliTest, you can easily see which tests are failing and add any necessary code to fix them. You can select
which of the generated tests to save into a test project to provide a regression suite. As you change your code, rerun
IntelliTest to keep the generated tests in sync with your code changes.

IntelliTest is available for C# only and does not support x64 configuration.

Get started with IntelliTest

You'll need Visual Studio Enterprise.

Explore: Use IntelliTest to explore your code and generate unit tests

To generate unit tests, your types must be public. Otherwise, create unit tests first before you generate them.

1. Open your solution in Visual Studio. Then open the class file that has methods you want to test.

2. Right-click in a method in your code and choose Run IntelliTest to generate unit tests for the code in your
method.

02.09.2016 13:35

Generate unit tests for your code with Intelli Test https://msdn.mi crosoft.comyen-ug/library/dn823749(d=printer).aspx

W triangle - Microsoft Visual Studio
File Edit View Project Build Debug Team Tools Architecture Test Analyze ‘Window Help

(0-0 | B-2 M| D -0 |[Debug | [AycPU [P Stat- B B-WY O
Sl | E
| [<#] Triangle - I *z TriangleTriangle
if (lengths.length < 3)
i
throw new ArgumentException({"length has insufficient size");
1
¥
| 0 references
=l public static TrianglekKind ClassifyBySidelengths(int[] lengths)
[{
ffvalidate(lengths);
int s1 = lengths - Quick Fixes... Ctrl+,
int s2 = lengths| Rename.. =)
int 53 = lengths| . .
Organize Usings 4
f (((s1 + 52 <= | 43 chow on Code Map Ctrl+!
return Triang| Find All References on Code Map
} s
AlEE A (feaies Show Related ltems on Code Map b
i Create Unit Tests
return Triang|
} Create IntelliTest
Else if ((s1 == Run IntelliTest
%1 Insert Snippet... Ctri+K, X

IntelliTest runs your code many times with different inputs. Each run is represented in the table showing the
input test data and the resulting output or exception.

IntelliTest Exploration Results - stopped

TriangleClassifyBySidelengths(int - % | P Run | W = {0 Wamings
@5 Q4 I 16/16 blocks, 0/0 asserts, 12 runs
lengths result Summary/Exception Error Message I Details:
@ 1 null NullReferenceException Object refer.., || 4 Stack trace:
020 IndexOutOfRangeException Index was out... SNt comnortxen phi
03 o IndexOutOfRangeException Index was out... a: _Trfe_r?g!E:'IFE?S_:I_?_?B}:SI_FI.E?HE_It"'
4 {00 IndexOutOfRangeException Index was out... - i
& 5 000 Irvwalid
@ 6 {55380 Ivwalid
@ 7 {67.0,0 Invalid
@ 8 {422 536,6.. Scalene
@ 9 (528 413 5.. lsosceles
& w223 sosceles
@ 11 (1,512,512} lsosceles
& 12 (512 512, 5., Equilateral

To generate unit tests for all the public methods in a class, simply right-click in the class rather than a specific

20f 8 02.09.2016 13:35

Generate unit tests for your code with Intelli Test

30f 8

https://msdn.mi crosoft.comyen-ug/library/dn823749(d=printer).aspx

method. Then choose Run IntelliTest. Use the drop-down list in the Exploration Results window to display the
unit tests and the input data for each method in the class.

Exploration Results

Triangle.ClassifyBySidelengths(int = | » Run | W
(Global Events)

— Triangle.Classi

mull
D2
D3 0
Q4 {00
@5 {000
ﬁ 6 {5 538 0}
@7 6700
@ & {422 536, 6.
ﬁ 9 {528 413, 5...
@O 10223
ﬁ 1 {1, 512, 512}
ﬂ 12 {512, 512, 5..

16/16 blocks, /0 asserts, 12 runs

Triangle.ClassifyBySideLengths(Int32[]) mary/Exception

MullReferenceException
IndexOutOfRangeException
IndexOutOfRangeException
IndexOutOfRangeException

Invalid

Invalid

Invalid

Scalene

lsosceles

lsosceles

lsosceles

Equilateral

Emror Message

Object reference not set to an instance o..
Index was outside the bounds of array.
Index was outside the bounds of array.
Index was outside the bounds of array.

For tests that pass, check that the reported results in the result column match your expectations for your code.

For tests that fail, fix your code as appropriate. Then rerun IntelliTest to validate the fixes.

Persist: Save the unit tests as a regression suite

1. Select the data rows that you want to save with the parameterized unit test into a test project.

IntelliTest Exploration Results - stopped

Triangle.ClassifyBy Sidelengths(int -~ % | b Run || Wl

@ 2 0 4 . 16/16 block

Save |
results Summary / Exception

Error Message

- | lengths
null
H
o1
{0, 0}
{0, 0, 0}
{3, 338, 0}
{67, 0, 0}
{422, 536, 6...
{528, 413, 5.
10 {2, 2, 3}
1 {1,512 512}
) 12 {512, 512, 5.

Ln s L pa —

MullReferenceException
IndexCutOfRangeException
IndexCutOfRangeException
IndexCutOfRangeException

Imvalid

Imvalid

Imvalid

Scalene

lsosceles

lsosceles

|sosceles

Equilateral

Index was cutside the bounds of array.
Index was cutside the bounds of array.
Index was outside the bounds of array.

Object reference not set to an instance o...

You can view the test project and the parameterized unit test that has been created - the individual unit tests,
corresponding to each of the rows, are saved in the .g.cs file in the test project, and a parameterized unit test is
saved in its corresponding .cs file. You can run the unit tests and view the results from Test Explorer just as you

02.09.2016 13:35

Generate unit tests for your code with Intelli Test

40f 8

would for any unit tests that you created manually.

Triangle.Test.cs* i ¥ -
I] TriangleTests - | #2 TriangleTriangleTest - | @ ClassifyBySidelengths(. - | Selution Explorer
/i <copyright file="TriangleTest.cs"»Copyright @ 2013</copyright» = Ql -5 ¢F I—@l < S o= i
B using System; ; Search Solution Explorer (Ctrl+) P~
usi.ng Hi.crosuft.Pe:{.Fr‘amewor‘k; . . &3] Solution ‘triangle’ (2 projects
using Microsoft.Pex.Framework.Validation; 4 Triangle

using Microsoft.VisualStudio.TestTools.UnitTesting;

using Triangle; b J Properties

p =@ References

E namespace Triangle P c# Classles
{ 4[] TrangleTests
[TestClass] 4 o Properties

[PexClass{typeof(global::Triangle.Triangle))]
[PexAllowedExceptionFromTypelUnderTest(typeof(ArgumentException)
[PexAllowedExceptionFromTypeUnderTest(typeof(InvalidOperation...

c# Assemblylnfo.cs
c# PexAssemblylnfo.cs

13 references 4 =B References
= public partial class TriangleTest =8 Analyzers
t [PexMethod] =B Microsoft.PexFramework
12 references =8 MicrosoftVisualStudie.Quality...
B public Trianglekind ClassifyBySidelLengths(int[] lengths) =B System
{ =-0 Triangle
TriangleKind result = global::Triangle.Triangle.Clas... 4 @ TriangleTest.cs

return result;
Jf TODO: add assertions to method TriangleTest.Clas...

b Y TrangleTest.ClassifyBySidelength.g.cs

b #z TnangleTest

Any necessary references are also added to the test project.

If the method code changes, rerun IntelliTest to keep the unit tests in sync with the changes.

Assist: Use IntelliTest to focus code exploration

1. If you have more complex code, IntelliTest assists you with focusing exploration of your code. For example, if

you have a method that has an interface as a parameter, and there is more than one class that implements that
interface, IntelliTest discovers those classes and reports a warning.

View the warnings to decide what you want to do.

IntelliTest Exploration Results - stopped

Classl.action(IShooter) - % PF Run | H ! 2'Wamings
® 2 €1 I 4/5 blocks, 0/0 asserts, 2 runs

Warnings Event

Runtime Warnings (2) ! will use Shooter.Camera as [Shooter”,

1 will use Shooter.Gun as 1Shooter”,

2. After you investigate the code and understand what you want to test, you can fix the warning to choose which

classes to use to test the interface.

02.09.2016 13:35

https://msdn.mi crosoft.comyen-ug/library/dn823749(d=printer).aspx

Generate unit tests for your code with Intelli Test https://msdn.mi crosoft.comyen-ug/library/dn823749(d=printer).aspx

IntelliTest Exploration Results - stopped

Classl.action{|Shooter) -'% P Run = | 1 2'Warnings
@2 Q1 I 45 blocks, O/0 asserts, 2 runs
Warnings Event

Runtime Warnings (2) ﬂ, will use Shooter.Camera as I1Shooter”,

1 will use Shooter.Gun as |Shooter”,

This choice is added into the PexAssemblyInfo.cs file.

[assembly: PexUseType(typeof(Camera))]

3. Now you can rerun IntelliTest to generate a parameterized unit test and test data just using the class that you
fixed.

IntelliTest Exploration Results - stopped

Classl.action{lShooter) - & | p Run | [~} = | ! 0Warnings
@1 1 I 3/6 blocks, O/0 asserts, 2 runs
- target 5 result(target) result | Summary / Exception Error Message 4 Details:
€3 1 newClass1} null MullReferenceException Object refer... [TestMethad]
@ 2 newClassl} new Came.. new Class1{} “Click” [PexGeneratedBy(typeof{

public void action63()
{
string s
Class1 s0 = new Class1();
Camera 51 = new Camer
s = this.action(s0, (ISho
Assert. AreEqual<string>
AssertlsMotMull{{object)s

Specify: Use IntelliTest to validate correctness properties that you specify in code

Specify the general relationship between inputs and outputs that you want the generated unit tests to validate. This
specification is encapsulated in a method that looks like a test method but is universally quantified. This is the

parameterized unit test method, and any assertions you make must hold for all possible input values that IntelliTest can
generate.

Q&A

Q: Can you use IntelliTest for unmanaged code?

A: No, IntelliTest only works with managed code.

Q: When does a generated test pass or fail?

A: It passes like any other unit test if no exceptions occur. It fails if any assertion fails, or if the code under test throws an
unhandled exception.

50f 8 02.09.2016 13:35

Generate unit tests for your code with Intelli Test https://msdn.mi crosoft.comyen-ug/library/dn823749(d=printer).aspx

If you have a test that can pass if certain exceptions are thrown, you can set one of the following attributes based on
your requirements at the test method, test class or assembly level:

® PexAllowedExceptionAttribute
® PexAllowedExceptionFromTypeAttribute
® PexAllowedExceptionFromTypeUnderTestAttribute

® PexAllowedExceptionFromAssemblyAttribute

Q: Can I add assumptions to the parameterized unit test?

A: Yes, use assumptions to specify which test data is not required for the unit test for a specific method. Use the
PexAssume class to add assumptions. For example, you can add an assumption that the lengths variable is not null like
this.

PexAssume.IsNotNull(lengths);

If you add an assumption and rerun IntelliTest, the test data that is no longer relevant will be removed.

Q: Can I add assertions to the parameterized unit test?

A: Yes, IntelliTest will check that what you are asserting in your statement is in fact correct when it runs the unit tests.
Use the PexAssert class or the assertion API that comes with the test framework to add assertions. For example, you can
add an assertion that two variables are equal.

PexAssert.AreEqual(a, b);

If you add an assertion and rerun IntelliTest, it will check that your assertion is valid and the test fails if it is not.

Q: Can I generate parameterized unit tests without running IntelliTest first?

A: Yes, right-click in the class or method, then choose Create IntelliTest.

60f 8 02.09.2016 13:35

Generate unit tests for your code with Intelli Test https://msdn.mi crosoft.comyen-ug/library/dn823749(d=printer).aspx

public static TriangleKind ClassifyBySidelengths(int[] lengths)

{
ffwalidate(lengths); .
ick Actions... Ctel«;
int s1 = lengths[&]; e ens o
int 52 = lengths[1]; Rename... Ctrl+R, Ctrl+R
int 53 = lengths[2]; Organize Usings b
if (((s1 + s2) <= s3] . Show on Code Map Ctrl+*
{ Find All References on Code Map
ret Trianglek
3 i ' Show Related lterns on Code Map]
else if ((s51 == s52) § Create Unit Tests
{ return Trianglek Create IntelliTest
T Fun IntelliTest

Accept the default format to generate your tests, or change how your project and tests are named. You can create a
new test project or save your tests to an existing project.

Create IntelliTest ?

Test Framework: M5Test v
Get Additional Extensions

Test Project: <Mew Test Project> v
Mame Format for Test Project: [Project].Tests

Mamespace: [Mamespace]. Tests

Mame Format for Test Class: [Class]Test

Mame Format for Test Method: | [Method]Test

QK | | Cancel

Q: Can I use other unit test frameworks with IntelliTest?

A: Yes, follow these steps to find and install other frameworks. After you restart Visual Studio and reopen your solution,
right-click in the class or method, then choose Create IntelliTest. Select your installed framework here:

70f8 02.09.2016 13:35

Generate unit tests for your code with Intelli Test https://msdn.mi crosoft.comyen-ug/library/dn823749(d=printer).aspx

Test Framework: M5Test

M5Test
xUnit.net 2.0
MUnit

Mame Format for Test Project: LNU':Itz T

Test Project:

Mamespace: | [Mamespace]. Tests

Marme Format for Test Class: | [Class]Test

Mame Format for Test Method: | [Method]Test

Then run IntelliTest to generate individual unit tests in their corresponding .g.cs files.

Q: Can I learn more about how the tests are generated?

A: Yes, to get a high-level overview, read this blog post.

© 2016 Microsoft

8of 8 02.09.2016 13:35

Run unit tests with Test Explorer https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

Run unit tests with Test Explorer

Visual Studio 2015

Use Test Explorer to run unit tests from Visual Studio or third-party unit test projects, group tests into categories, filter the
test list, and create, save, and run playlists of tests. You can also debug tests and analyze test performance and code
coverage.

Contents

Unit test frameworks and test projects
Run tests in Test Explorer

View test results

Group and filter the test list

Create custom playlists

Debug and analyze unit tests

External resources

Unit test frameworks and test projects

Visual Studio includes the Microsoft unit testing frameworks for both managed and native code. However, Test Explorer
can also run any unit test framework that has implemented a Test Explorer adapter. For more information about installing
third-party unit test frameworks, see Install third-party unit test frameworks

Test Explorer can run tests from multiple test projects in a solution and from test classes that are part of the production
code projects. Test projects can use different unit test frameworks. When the code under test is written for the .NET
Framework, the test project can be written in any language that also targets the .NET Framework, regardless of the
language of the target code. Native C/C+ + code projects must be tested by using a C+ + unit test framework.

& Contents

Run tests in Test Explorer

Run tests|Run tests after every build

When you build the test project, the tests appear in Test Explorer. If Test Explorer is not visible, choose Test on the Visual
Studio menu, choose Windows, and then choose Test Explorer.

lof 11 02.09.2016 13:56

Run unit tests with Test Explorer https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

G (2B seocn p-

Rurn All | Run,.. =

4 Failed Tests (1)

(%) Accountinfo_GetAccountinfo_InvalidData

4 Skipped Tests (1)

1 Accountinfo_AddCheckingAcoount_InvalidData
4 Passed Tests (2)
#) Accountinfo_AddCheckingAccount_ValidData <= 1ms
@) Accountinfo_AddSavingstccount_ValidData < 1ms
4 Mot Run Tests (1)

i) Accountinfo_CreateAccount_lnvalidData

AccountInfo_GetAccountInfo InvalidData
Source! UnitTestl.cs line 11

ﬁ Test Failed - Accountinfo_GetAccountinfo_InvalidData

Message: Assert.IsTrue failed. "1234’ is not an authorized
account

Efapsed time: 216 ms

4 StackTrace:

AecountinfoTests. Accountlnfe_GetAccountnfo_[n..

As you run, write, and rerun your tests, Test Explorer displays the results in default groups of Failed Tests, Passed Tests,
Skipped Tests and Not Run Tests. You can change the way Test Explorer groups your tests.

You can perform much of the work of finding, organizing and running tests from the Test Explorer toolbar.

|r| Run tests after every build Search [filter tests

r[Choose a category for grouping tests | Chnuse a-fill:er category
Bt s ———— Eﬁ

Ly E Path:"C:\Projects\MyBank|AccountInfoTests S -]

E Fun Al I Run.. =

|—| Choose the tests to run.
IRuﬂ all tests

& Contents

Run tests

You can run all the tests in the solution, all the tests in a group, or a set of tests that you select. Do one of the following:

® To run all the tests in a solution, choose Run All.
® To run all the tests in a default group, choose Run... and then choose the group on the menu.

® Select the individual tests that you want to run, open the context menu for a selected test and then choose Run

2 of 11 02.09.2016 13:56

Run unit tests with Test Explorer https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

Selected Tests.

e If individual tests have no dependencies that prevent them from being run in any order, turn on parallel test
-—
execution with the ®= toggle button on the toolbar. This can noticeably reduce the time taken to run all the

tests.

The pass/fail bar at the top of the Test Explorer window is animated as the tests run. At the conclusion of the test run,
the pass/fail bar turns green if all tests passed or turns red if any test failed.

& Contents

Run tests after every build

& Warning

Running unit tests after every build is supported in Visual Studio Enterprise.

To run your unit tests after each local build, choose Test on the standard menu, and then choose Run Tests
After Build on the Test Explorer toolbar.

& Contents

View test results

View test details|View the source code of a test method

As you run, write, and rerun your tests, Test Explorer displays the results in groups of Failed Tests, Passed Tests, Skipped
Tests and Not Run Tests. The details pane at the bottom of Test Explorer displays a summary of the test run.

View test details

To view the details of an individual test, select the test.

3of 11 02.09.2016 13:56

Run unit tests with Test Explorer

4 of 11

Test Explorer * 1 X

& 2B scach P -

I] Streaming Video: Improving quality with unit tests and fak..

Fun All | Run.. = | Playlist: All Tests =

4 CustomerListTests (7)
I:E]I DeleteCustomer_ShouldRemoveCustomerFromList 19 ms

ﬂ AddCustomer_InvalidDataShouldSetErroridessag... <1
ﬁ AddCustomer_ValidDataShouldAddCustomerTo.. <1
ﬂ AddCustomer_ValidDataShouldReturnCustomer... =1
ﬁ AddCustomer_ValidDataShouldSendEmailToCus... <1
ﬂ EditCustomer_InvalidDataShouldSetErrorbessage <1
ﬁ EditCustomer_Valid DataShould ModifyCustomer... <1

DeleteCustomer_ShouldRemoveCustomerFromList
Source: CustomerListTests.cs line 40

ﬁ Test Failed - DeleteCustomer_ShouldRemoveCustomer
Message: Assert.lsTrue failed.
Elapsed time: 19ms
4 StackTrace:

CustomerListTests.DeleteCustomer_ShouldRem...

The test details pane displays the following information:

-

ms

ms

ms

ms

ms

ms

FY

https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

® The source file name and the line number of the test method.

® The status of the test.

® The elapsed time that the test method took to run.

If the test fails, the details pane also displays:

® The message returned by the unit test framework for the test.

® The stack trace at the time the test failed.

& Contents

View the source code of a test method

To display the source code for a test method in the Visual Studio editor, select the test and then choose Open Test on

the context menu (Keyboard: F12).

& Contents

02.09.2016 13:56

Run unit tests with Test Explorer

50f 11

Group and filter the test list

Grouping the test list|Group by traits|Search and filter the test list

https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

Test Explorer lets you group your tests into predefined categories. Most unit test frameworks that run in Test Explorer let
you define your own categories and category/value pairs to group your tests. You can also filter the list of tests by
matching strings against test properties.

Grouping the test list

To change the way that tests are organized, choose the down arrow next to the Group By button [- and select a
new groupi

Test Explorer

N E »

@: Y Cas juality with unit tests and fak.. -

Run . EEEEE \ll Tests ~

Outcome

4 Cy ;
E: Tral-ﬁ moveCustomer FromList 19 ms
[Project ihouldSetErrorMessag.. < 1ms
0 AddCustomer_ValidDataShouldAddCustomerTo... < 1ms
0 AddCustomer_ValidDataShouldReturnCustomer... <=1 ms
O AddCustomer_ValidDataShouldSendEmailToCus... < 1ms
0 EditCustomer_InvalidDataShouldSetErrorbessage < 1ms
0 EditCustomer_Valid DataShould ModifyCustomer... < 1ms

ng criteria.

Test Explorer groups

Groups tests by execution results: Failed Tests, Skipped Tests, Passed Tests.

Groups test by category/value pairs that you define. The syntax to specify trait categories and

Group Description
Duration Groups test by execution time: Fast, Medium, and Slow.
Outcome
Traits
values is defined by the unit test framework.
Project Groups test by the name of the projects.
& Contents

Group by traits

A trait is usually a category name/value pair, but it can also be a single category. Traits can be assigned to methods

02.09.2016 13:56

Run unit tests with Test Explorer https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

that are identified as a test method by the unit test framework. A unit test framework can define trait categories. You
can add values to the trait categories to define your own category name/value pairs. The syntax to specify trait
categories and values is defined by the unit test framework.

Traits in the Microsoft Unit Testing Framework for Managed Code

In the Microsoft unit test framework for managed apps, you define a trait name/ value pair in a TestPropertyAttribute
attribute. The test framework also contains these predefined traits:

Trait Description

OwnerAttribute The Owner category is defined by the unit test framework and requires you to provide a
string value of the owner.

PriorityAttribute The Priority category is defined by the unit test framework and requires you to provide an
integer value of the priority.

TestCategoryAttribute | The TestCategory attribute enables you to provide a category without a value. A category
defined by the TestCategory attribute can also be the category of a TestProperty attribute.

TestPropertyAttribute | The TestProperty attribute enables you to define trait category/value pair.

Traits in the Microsoft Unit Testing Framework for C++

To define a trait, use the TEST_METHOD_ATTRIBUTE macro. For example, to define a trait named TEST_MY_TRAIT:

C++

#define TEST_MY_TRAIT(traitValue) TEST_METHOD ATTRIBUTE(L"MyTrait", traitValue)

To use the defined trait in your unit tests:

BEGIN_TEST_METHOD_ ATTRIBUTE(Method1)
TEST_OWNER(L"OwnerName")
TEST_PRIORITY(1)
TEST_MY_TRAIT(L"thisTraitvalue")

END_TEST_METHOD ATTRIBUTE()

TEST_METHOD (Method1)

{
Logger: :WriteMessage("In Methodl");

Assert::AreEqual(9, 9);

C++ trait attribute macros

6 of 11 02.09.2016 13:56

Run unit tests with Test Explorer https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

7 of 11

Macro Description

TEST_METHOD_ATTRIBUTE (attributeName, Use the TEST_METHOD_ATTRIBUTE macro to define a
attributeValue) trait.

TEST_OWNER (ownerAlias) Use the predefined Owner trait to specify an owner of

the test method.

TEST_PRIORITY(priority) Use the predefined Priority trait to assign relative
priorities to your test methods.

@ Contents

Search and filter the test list

You can use Test Explorer filters to limit the test methods in your projects that you view and run.

When you type a string in in the Test Explorer search box and choose ENTER, the test list is filtered to display only
those tests whose fully qualified names contain the string.

To filter by a different criteria:

1. Open the drop-down list to the right of the search box.
2. Choose a new criteria.
3. Enter the filter value between the quotation marks.

Test Explorer * I X

S lif - = | Cass Customer” P ']

.) _ Add a search filter
A streaming Vi])]
Class Trait Project Error Message File Path

Run All | Run... . Fully Qualified Mame Output Outcome

4 CustomerlListTests (7)

0 AddCustomer_Invalid DataShouldSetErrorMessa... <1 ms

0 AddCustomer_ValidDataShouldAddCustomerTo.. <1 ms

0 AddCustomer ValidDataShouldReturnCustomer... <1 ms

0 AddCustomer_ValidDataShouldSendEmailToCus... <1 ms
¥ Note

Searches are case insensitive and match the specified string to any part of the criteria value.

Qualifier Description

02.09.2016 13:56

Run unit tests with Test Explorer https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

Trait Searches both trait category and value for matches. The syntax to specify trait categories and
values are defined by the unit test framework.

Project Searches the test project names for matches.

Error Message Searches the user-defined error messages returned by failed asserts for matches.

File Path Searches the fully qualified file name of test source files for matches.

Fully Qualified Searches the fully qualified file name of test namespaces, classes, and methods for matches.

Name

Output Searches the user-defined error messages that are written to standard output (stdout) or
standard error (stderr). The syntax to specify output messages are defined by the unit test
framework.

Outcome Searches the Test Explorer category names for matches: Failed Tests, Skipped Tests, Passed
Tests.

To exclude a subset of the results of a filter, use the following syntax:

FilterName:"Criteria" -FilterName:"SubsetCriteria’

For example,

FullName:"MyClass" - FullName:"PerfTest"

returns all tests that include "MyClass" in their name except those tests that also include "PerfTest" in their name.

& Contents

Create custom playlists

You can create and save a list of tests that you want to run or view as a group. When you select a playlist, the tests in the
list are displayed Test Explorer. You can add a test to more than one playlist, and all tests in your project are available
when you choose the default All Tests playlist.

8 of 11 02.09.2016 13:56

Run unit tests with Test Explorer https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

Test Explorer

i: Streaming Video: Improving quality with unit tests and fak.. -
Fun All | Run.. = | Playlist: All Tests =

4 CustomerListTests R e

) AddCustomer_.. + All Tests
) AddCustomer_...
0 AddCustomer_...
0 AddCustomer_...
@ DeletecCustome... SmokeTest

0 EditCustomer_InvalidDataShouldSetErrorbessage <=1 ms

E2E-ResolveBillinglssue

E2E-QualifyAddSellCustomer

To create a playlist, choose one or more tests in Test Explorer. On the context menu, choose Add to Playlist,
NewPlaylist. Save the file with the name and location that you specify in the Create New Playlist dialog box.

To add tests to a playlist, choose one or more tests in Test Explorer. On the context menu, choose Add to Playlist, and
then choose the playlist that you want to add the tests to.

To open a playlist, choose Test, Playlist from the Visual Studio menu, and either choose from the list of recently used
playlists, or choose Open Playlist to specify the name and location of the playlist.

If individual tests have no dependencies that prevent them from being run in any order, turn on parallel test execution
—

with the == toggle button on the toolbar. This can noticeably reduce the time taken to run all the tests.

& Contents

Debug and analyze unit tests

Debug unit tests|Diagnose test method performance issues|Analyze unit test code coverage

Debug unit tests

You can use Test Explorer to start a debugging session for your tests. Stepping through your code with the Visual
Studio debugger seamlessly takes you back and forth between the unit tests and the project under test. To start
debugging:

1.In the Visual Studio editor, set a breakpoint in one or more test methods that you want to debug.

[# Note

Because test methods can run in any order, set breakpoints in all the test methods that you want to debug.

2.In Test Explorer, select the test methods and then choose Debug Selected Tests on the context menu.

9of 11 02.09.2016 13:56

Run unit tests with Test Explorer https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

For more information, about the debugger, see Debugging in Visual Studio.

& Contents

Diagnose test method performance issues

To diagnose why a test method is taking too much time, select the method in Test Explorer and then choose Profile on
the context menu. See Using Profiling Tools.

Analyze unit test code coverage

[Note

Unit test code coverage is available only in Visual Studio Enterprise.

You can determine the amount of your product code that is actually being tested by your unit tests by using the Visual
Studio code coverage tool. You can run code coverage on selected tests or on all tests in a solution.

To run code coverage for test methods in a solution:

1. Choose Tests on the Visual Studio menu and then choose Analyze code coverage.

2. Choose one of the following commands from the sub-menu:

O Selected tests runs the test methods that you have selected in Test Explorer.

O All tests runs all the test methods in the solution.

The Code Coverage Results window displays the percentage of the blocks of product code that were exercised by line,
function, class, namespace and module.

For more information, see Using Code Coverage to Determine How Much Code is being Tested.

& Contents

External resources

Guidance

Testing for Continuous Delivery with Visual Studio 2012 — Chapter 2: Unit Testing: Testing the Inside

10 of 11 02.09.2016 13:56

Run unit tests with Test Explorer https://msdn.mi crosoft.com/en-us/library/hh270865(d=printer).aspx

See Also

Unit Test Your Code
Run a unit test as a 64-bit process

© 2016 Microsoft

11 of 11 02.09.2016 13:56

Wal kthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.mi crosoft.com/en-us/li brary/hhd40545(d=printer).aspx

Walkthrough: Creating and Running Unit
Tests for Windows Store Apps

Visual Studio 2015

Visual Studio includes support for unit testing managed Windows 8.x Store apps and includes unit test library templates for
Visual C#, Visual Basic and Visual C++.

? Tip

For more information about developing Windows 8.x Store apps, see Getting started with Windows Store apps.

Visual Studio provides the following unit testing functionality:

® Create unit test projects

® Edit the Manifest for the Unit Test Project
® Code the Unit Test

® Run Unit Tests

The following procedures describe the steps to create, run and debug unit tests for managed Windows 8 Windows 8.x Store
app.

Prerequisites
Visual Studio

Create unit test projects

To create a unit test project for a Windows Store app

1. From the File menu, choose New Project.
The New Project dialog displays.

2. Under Templates, choose the programming language you want to create unit test in and then choose the
associated Windows 8.x Store unit test library. For example, choose Visual C#, then choose Windows Store, and
then choose Unit Test Library (Windows Store apps).

lof6 03.09.2016 15:40

Wal kthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.mi crosoft.com/en-us/li brary/hhd40545(d=printer).aspx

[Note

Visual Studio includes unit test library templates for Visual C#, Visual Basic and Visual C+ +.

3. (Optional) In the Name textbox, enter the name you want to use for the Windows 8.x Storeunit test project.

4. (Optional) Modify the path where you want to create the project by entering it in the Location textbox, or
choosing the Browse button.

5. (Optional) In the Solution name textbox, enter that name you want to use for your solution.

6. Leave the Create directory for solution option selected and choose the OK button.

P Recent .MET Framework 4.5 = Sortby: Default - ;;: 2= SearchInstall
4 [nstalled ce .
P o |] Blank App(XAML) Visual C# Type: Visual C#
MPAIEs P A project that contains unit
b Visual Basie | g TN ! tests that can be used to test
A Visual Ci HH Grid App (XAML) Visual C# Windows Store apps, Windows
. c# Runtime components, or class
Windows Store _F_“_‘l Split App (XAML) Visual C# libraries for Windows Store
Windows == PR
cil
Web Ell:ﬁi Class Library (Windows Store apps) Wisual C#
b Office o i
Cloud u‘h! Windows Runtime Component Visual C#
Reparting . e
v E‘?i! Unit Test Library (Windows Store A.. Visual C#
Online £
MName: é} UnitTestLibraryl
Location; ‘i:l ChUserst AdamBarrdocumentsivisual studio 201 2\Projects - Browse...
Solution name: {51 UnitTestLibrary] ¥ Create directory for solution

|| Add to source control

- -Ej OK | | Cancel

Solution Explorer is populated with your new Windows 8.x Storeunit test project and the code editor displays the
default unit test titled UnitTest1.

20f 6 03.09.2016 15:40

Wal kthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.mi crosoft.com/en-us/li brary/hhd40545(d=printer).aspx

= SOLUTIOM EXPLORER ===+ 8 X
UnitTestl.cs = X
:))) @ & (D & 0 4
"'Ig UnitTestProjectl.UnitTestl - . TestMethodi() -
Search IDE (Cirl+')

[E vsing System; coff = #
s SysT.em.Lnl.l?v:r.1nn5.Eener1r:; = £g solution 'UnitTestProject’ {1...
using System.Lling; [
using System.Test: < E UnitTestProjectl

| using Microsoft.\MiswalStudio.TestTeols.UnitTesting; b S Properties

= namespace UnitTestProjectl 3 P =W References
[PO 1 bl Images
B 3_,L1"C .:Llaés UntETasid [package appxmanifest
L

£ UnitTestl.cs

E =]
ublic void TestMethodli)

|

s T —

i

Edit the Manifest for the Unit Test Project

It may be necessary to edit the manifest for the unit test project to provide required capabilities to run the app.
To edit the unit test project’s Windows Store application manifest file

1.In Solution Explorer, in the new Windows 8.x Store unit test project, right-click the Package.appxmanifest file and
choose Open.

The Manifest Designer displays for editing.
2.In the Manifest Designer, choose the Capabilities tab.
3. In the list under Capabilities, select the capabilities that you need your unit test and the code that it testing to

have. For example, select the Internet checkbox if the unit test needs and the code it is testing need to have the
capability to access the internet.

[# Note

The capabilities you select should only include capabilities that are necessary for the Windows 8.x Store unit test
to function correctly. The capabilities should never have to include capabilities that are not part of the Windows

8.x Store app being tested and generally should be a subset of the capabilities specified for the Windows 8.x
Storeapp under test.

For more information about the Manifest Designer, see Configure a Windows 8.1 app package by using the
manifest designer.

30f 6 03.09.2016 15:40

Wal kthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.mi crosoft.com/en-us/li brary/hhd40545(d=printer).aspx

4 of 6

The praperties of the deplayment package for yvour application are contained in the application manifest file. You can
use this designer to set or modify many of the properties
i
Application Ul () " Capabilites Contracts | Packaging J)

Use this page to&pecify systehg features or devices that your apphcation can e

Description

Provides outbound access to the [nternet and networks in public places
like airports and coffee shops (e intranet networks where the user has
designated the network as public). Most applications that require internet

should use this capability.
Solution Explorer » B %

1 Default Windows Credentials
[[] Document Library Access
[Homey/work Netwarking
[internet (Client & Server)

€| Fl internet (Client)

[7] Location W el e S U VS =
3 Solution ‘UnitTestProjectl’ (1 project)
¥ 3"} UnitTestProjectl
[=d| Properties
sdl References
[Images
—— 1) Package.appxmanifest
] UnitTestl.cs
Code the Unit Test
To code the unit test for a Windows Store app
1.In the Code Editor, edit the unit test and add the asserts and logic required for your test.
For more information, see in Using the Assert Classes in the MSDN library.
Run Unit Tests
To build the solution and run the unit test using Test Explorer
1. On the Test menu, choose Windows, and then choose Test Explorer.
Test Explorer displays without your test being listed.
2. From the Build menu, choose Build Solution.
Your unit test is now listed.
03.09.2016 15:40

Wal kthrough: Creating and Running Unit Tests for Windows Store Apps https://msdn.mi crosoft.com/en-us/li brary/hhd40545(d=printer).aspx

[Note

You must build the solution to update the list of unit tests in Test Explorer.

& Warning

Visual Studio known issue: You must open Test Explorer prior to building the test project.

3. In Test Explorer, choose the unit test you created.

? Tip

Test Explorer provides a link to the source code next to Source:.

4.Choose Run All.

UMIT TEST EXPLORER = 0 X

@

Home -~

RBum All | Bun... =

Mot Run Tests (Showing 1 of 1)
Show All

? TestMethodl

UNIT TEST EXPLORER SOLUTION EXP...

? Tip
You can select one or more unit tests listed in Explorer and then right-click and choose Run Selected Tests.

Additionally, you can choose to Debug Selected Tests, Open Test, and use the Properties option.

Run Selected Tests
Debug Selected Tests
Cpen Test F12

i= Froperties

The unit test runs. Upon completion, Test Explorer displays the test status, elapsed time and provides a link to the
source.

50f 6 03.09.2016 15:40

Wal kthrough: Creating and Running Unit Tests for Windows Store Apps

== UMNIT TEST EXPLORER Seeee e s n x
G = o~

Home -
Run All |Run.. =

Passed Tests (1 of 1)
Show all

) TestMethod1

TestMethodl
Source: UnitTestl.cs line 14
%) Test Passed - TestMethod1

Elapsed time: 13 ms

UMIT TEST EXPLORER SOLUTION EXP..

External Resources

Videos

https://msdn.mi crosoft.com/en-us/li brary/hhd40545(d=printer).aspx

Channel 9: Unit testing your Windows Store apps built using XAML

Forums
Visual Studio Unit Testing

MSDN Library

MSDN Library — Creating and Running Unit Tests for Existing Code (Visual Studio 2010)

See Also
Testing Store apps with Visual Studio

Build and test a Windows Store app using Team Foundation Build

© 2016 Microsoft

6 of 6

03.09.2016 15:40

Writing Unit Tests for the .NET Framework with the Microsoft Unit Test ... https://msdn.mi crosoft.com/en-us/li brary/hh598960(d=printer).aspx

Writing Unit Tests for the .NET Framework
with the Microsoft Unit Test Framework for
Managed Code

Visual Studio 2015

In this section
Walkthrough: Creating and Running Unit Tests for Managed Code

Quick Start: Test Driven Development with Test Explorer

Using Microsoft.VisualStudio.TestTools.UnitTesting Members in Unit Tests
Using the Assert Classes

How To: Create a Data-Driven Unit Test

Unit tests for Generic Methods

How to: Configure Unit Tests to Target An Earlier Version of the NET Framework

Sample Project for Creating Unit Tests

© 2016 Microsoft

lof1l 03.09.2016 15:41

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

Walkthrough: Creating and Running Unit
Tests for Managed Code

Visual Studio 2015

This walkthrough will step you through creating, running, and customizing a series of unit tests using the Microsoft unit test
framework for managed code and the Visual Studio Test Explorer. You start with a C# project that is under development,
create tests that exercise its code, run the tests, and examine the results. Then you can change your project code and re-run
the tests.

This topic contains the following sections:
Prepare the walkthrough
Create a unit test project

Create the test class

® Test class requirements
Create the first test method

® Test method requirements

Build and run the test
Fix your code and rerun your tests

Use unit tests to improve your code

[# Note

This walkthrough uses the Microsoft unit test framework for managed code. Test Explorer also can run tests from third
party unit test frameworks that have adapters for Test Explorer. For more information, see Install third-party unit test
frameworks

[Note

For information about how to run tests from a command line, see Walkthrough: using the command-line test utility.

Prerequisites

1of 10 02.09.2016 13:49

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

® The Bank project. See Sample Project for Creating Unit Tests.

Prepare the walkthrough

1. Open Visual Studio.

2. On the File menu, point to New and then click Project.
The New Project dialog box appears.

3. Under Installed Templates, click Visual C#.

4.1n the list of application types, click Class Library.

5.In the Name box, type Bank and then click OK.

[# Note

If the name "Bank" is already used, choose another name for the project.

The new Bank project is created and displayed in Solution Explorer with the Classl.cs file open in the Code Editor.

[Note

If the Classl.cs file is not open in the Code Editor, double-click the file Classl.cs in Solution Explorer to openit.

6. Copy the source code from the Sample Project for Creating Unit Tests.

7. Replace the original contents of Class1.cs with the code from the Sample Project for Creating Unit Tests.

8. Save the file as BankAccount.cs

9. On the Build menu, click Build Solution.
You now have a project named Bank. It contains source code to test and tools to test it with. The namespace for Bank,
BankAccountNS, contains the public class BankAccount, whose methods you will test in the following procedures.

In this quick start, we focus on the Debit method.The Debit method is called when money is withdrawn an account and
contains the following code:

C#

// method under test
public void Debit(double amount)

{

if(amount > m_balance)

2 of 10 02.09.2016 13:49

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

{

throw new ArgumentOutOfRangeException("amount");
}
if (amount < @)
{

throw new ArgumentOutOfRangeException("amount™);
}

m_balance += amount;

Create a unit test project

Prerequisite: Follow the steps in the procedure, Prepare the walkthrough.

To create a unit test project

1. On the File menu, choose Add, and then choose New Project
2.In the New Project dialog box, expand Installed, expand Visual C#, and then choose Test.
3. From the list of templates, select Unit Test Project.
4.1n the Name box, enter BankTest, and then choose OK.
The BankTests project is added to the the Bank solution.
5.1n the BankTests project, add a reference to the Bank solution.

In Solution Explorer, select References in the BankTests project and then choose Add Reference... from the
context menu.

6. In the Reference Manager dialog box, expand Solution and then check the Bank item.

Create the test class

We need a test class for verifying the BankAccount class. We can use the UnitTestl.cs that was generated by the project

template, but we should give the file and class more descriptive names. We can do that in one step by renaming the file in
Solution Explorer.

Renaming a class file

In Solution Explorer, select the UnitTest1.cs file in the BankTests project. From the context menu, choose Rename, and
then rename the file to BankAccountTests.cs. Choose Yes on the dialog that asks if you want to rename all references in
the project to the code element 'UnitTest1'. This step changes the name of the class to BankAccountTest.

The BankAccountTests.cs file now contains the following code:

3 of 10 02.09.2016 13:49

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

C#
// unit test code
using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace BankTests

{
[TestClass]
public class BankAccountTests
{
[TestMethod]
public void TestMethodl()
{
}
}
}

Add a using statement to the project under test

We can also add a using statement to the class to let us to call into the project under test without using fully qualified
names. At the top of the class file, add:

C#

using BankAccountNS;

Test class requirements

The minimum requirements for a test class are the following:
® The [TestClass] attribute is required in the Microsoft unit testing framework for managed code for any class
that contains unit test methods that you want to run in Test Explorer.

® Each test method that you want Test Explorer to run must have the [TestMethod]attribute.

You can have other classes in a unit test project that do not have the [TestClass] attribute, and you can have other
methods in test classes that do not have the [TestMethod] attribute. You can use these other classes and methods in
your test methods.

Create the first test method

In this procedure, we will write unit test methods to verify the behavior of the Debit method of the BankAccount class.
The method is listed above.

By analyzing the method under test, we determine that there are at least three behaviors that need to be checked:

4 of 10 02.09.2016 13:49

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

1. The method throws an ArgumentOutOfRangeException if the debit amount is greater than the balance.

2.1t also throws ArgumentOutOfRangeException if the debit amount is less than zero.

3.If the checks in 1.) and 2.) are satisfied, the method subtracts the amount from the account balance.

In our first test, we verify that a valid amount (one that is less than the account balance and that is greater than zero)
withdraws the correct amount from the account.

To create a test method

1. Add a using BankAccountNS; statement to the BankAccountTests.cs file.

2. Add the following method to that BankAccountTests class:
C#

// unit test code
[TestMethod]
public void Debit_WithValidAmount_UpdatesBalance()

{

// arrange

double beginningBalance = 11.99;

double debitAmount = 4.55;

double expected = 7.44;

BankAccount account = new BankAccount("Mr. Bryan Walton", beginningBalance);

// act
account.Debit(debitAmount);

// assert

double actual = account.Balance;
Assert.AreEqual(expected, actual, 0.001, "Account not debited correctly");

The method is rather simple. We set up a new BankAccount object with a beginning balance and then withdraw a valid
amount. We use the Microsoft unit test framework for managed code AreEqual method to verify that the ending balance
is what we expect.

Test method requirements

A test method must meet the following requirements:

® The method must be decorated with the [TestMethod] attribute.
® The method must return void.

® The method cannot have parameters.

5of 10 02.09.2016 13:49

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

Build and run the test

To build and run the test

1. On the Build menu, choose Build Solution.

If there are no errors, the UnitTestExplorer window appears with Debit_WithValidAmount_UpdatesBalance
listed in the Not Run Tests group. If Test Explorer does not appear after a successful build, choose Test on the
menu, then choose Windows, and then choose Test Explorer.

2. Choose Run All to run the test. As the test is running the status bar at the top of the window is animated. At the
end of the test run, the bar turns green if all the test methods pass, or red if any of the tests fail.

3. In this case, the test does fail. The test method is moved to the Failed Tests. group. Select the method in Test
Explorer to view the details at the bottom of the window.

Fix your code and rerun your tests

Analyze the test results

The test result contains a message that describes the failure. For the AreEquals method, message displays you what was
expected (the (Expected <XXX>parameter) and what was actually received (the Actual<YYY> parameter). We were
expecting the balance to decline from the beginning balance, but instead it has increased by the amount of the
withdrawal.

A reexamination of the Debit code shows that the unit test has succeeded in finding a bug. The amount of the withdrawal
is added to the account balance when it should be subtracted.

Correct the bug

To correct the error, simply replace the line
Ci#

m_balance += amount;

with
C#

m_balance -= amount;

Rerun the test

In Test Explorer, choose Run All to rerun the test. The red/green bar turns green, and the test is moved to the Passed
Tests group.

6 of 10 02.09.2016 13:49

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

Use unit tests to improve your code

This section describes how an iterative process of analysis, unit test development, and refactoring can help you make your
production code more robust and effective.

Analyze the issues

After creating a test method to confirm that a valid amount is correctly deducted in the Debit method, we can turn to
remaining cases in our original analysis:

1. The method throws an ArgumentOutOfRangeException if the debit amount is greater than the balance.

2.1t also throws ArgumentOutOfRangeException if the debit amount is less than zero.

Create the test methods
A first attempt at creating a test method to address these issues seems promising:
Ci#

//unit test method

[TestMethod]

[ExpectedException(typeof (ArgumentOutOfRangeException))]

public void Debit_WhenAmountIsLessThanZero_ShouldThrowArgumentOutOfRange()

{
// arrange
double beginningBalance = 11.99;
double debitAmount = -100.00;
BankAccount account = new BankAccount("Mr. Bryan Walton", beginningBalance);
// act
account.Debit(debitAmount);
// assert is handled by ExpectedException
}

We use the ExpectedExceptionAttribute attribute to assert that the right exception has been thrown. The attribute causes
the test to fail unless an ArgumentOutOfRangeException is thrown. Running the test with both positive and negative
debitAmount values and then temporarily modifying the method under test to throw a generic ApplicationException

when the amount is less than zero demonstrates that test behaves correctly. To test the case when the amount withdrawn
is greater than the balance, all we need to do is:

1. Create a new test method named Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange.

2. Copy the method body from Debit_WhenAmountIsLessThanZero_ShouldThrowArgumentOutOfRange to the
new method.

3. Set the debitAmount to a number greater than the balance.

7 of 10 02.09.2016 13:49

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

Run the tests

Running the two methods with different values for debitAmount demonstrates that the tests adequately handle our
remaining cases. Running all three tests confirm that all cases in our original analysis are correctly covered.

Continue the analysis

However, the last two test methods are also somewhat troubling. We cannot be certain which condition in the code under
test throws when either test runs. Some way of differentiating the two conditions would be helpful. As we think about the
problem more, it becomes apparent that knowing which condition was violated would increase our confidence in the
tests. This information would also very likely be helpful to the production mechanism that handles the exception when it
is thrown by the method under test. Generating more information when the method throws would assist all concerned,
but the ExpectedException attribute cannot supply this information..

Looking at the method under test again, we see both conditional statements use an ArgumentOutOfRangeException
constructor that takes name of the argument as a parameter:

C#

throw new ArgumentOutOfRangeException("amount");

From a search of the MSDN Library, we discover that a constructor exists that reports far richer information.
ArgumentOutOfRangeException(String, Object, String) includesthe name of the argument, the argument value,
and a user-defined message. We can refactor the method under test to use this constructor. Even better, we can use
publicly available type members to specify the errors.

Refactor the code under test

We first define two constants for the error messages at class scope:
Ci#

// class under test
public const string DebitAmountExceedsBalanceMessage = "Debit amount exceeds balance";
public const string DebitAmountLessThanZeroMessage = "Debit amount less than zero";

We then modify the two conditional statements in the Debit method:
Ci#

// method under test
//

if (amount > m_balance)

{

throw new ArgumentOutOfRangeException("amount", amount,
DebitAmountExceedsBalanceMessage);

}

if (amount < 9)

{

throw new ArgumentOutOfRangeException("amount", amount,
DebitAmountLessThanZeroMessage);

02.09.2016 13:49

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

/7

Refactor the test methods

In our test method, we first remove the ExpectedException attribute. In its place, we catch the thrown exception and

verify that it was thrown in the correct condition statement. However, we must now decide between two options to verify
our remaining conditions. For example in the
Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange method, we can take one of the
following actions:

® Assert that the ActualValue property of the exception (the second parameter of the
ArgumentOutOfRangeException constructor) is greater than the beginning balance. This option requires that we
test the ActualValue property of the exception against the beginningBalance variable of the test method, and
also requires then verify that the Actualvalue is greater than zero.

® Assert that the message (the third parameter of the constructor) includes the
DebitAmountExceedsBalanceMessage defined in the BankAccount class.

The StringAssert.Contains method in the Microsoft unit test framework enables us to verify the second option without the
calculations that are required of the first option.

A second attempt at revising Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange might look

like:
C#
[TestMethod]
public void Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange()
{
// arrange
double beginningBalance = 11.99;
double debitAmount = 20.0;
BankAccount account = new BankAccount("Mr. Bryan Walton", beginningBalance);
// act
try
{
account.Debit(debitAmount);
}
catch (ArgumentOutOfRangeException e)
{
// assert
StringAssert.Contains(e.Message, BankAccount. DebitAmountExceedsBalanceMessage);
}
}

Retest, rewrite, and reanalyze

When we retest the test methods with different values, we encounter the following facts:

9 of 10 02.09.2016 13:49

Wal kthrough: Creating and Running Unit Tests for Managed Code https://msdn.mi crosoft.conven-ug/library/ms182532(d=printer).aspx

10 of 10

1. If we catch the correct error by using an assert where debitAmount that is greater than the balance, the Contains
assert passes, the exception is ignored, and so the test method passes. This is the behavior we want.

2.If we use a debitAmount that is less than O, the assert fails because the wrong error message is returned. The assert
also fails if we introduce a temporary ArgumentOutOfRange exception at another point in the method under test
code path. This too is good.

3.If the debitAmount value is valid (i.e., less than the balance but greater than zero, no exception is caught, so the

assert is never caught. The test method passes. This is not good, because we want the test method to fail if no
exception is thrown.

The third fact is a bug in our test method. To attempt to resolve the issue, we add a Fail assert at the end of the test
method to handle the case where no exception is thrown.

But retesting shows that the test now fails if the correct exception is caught. The catch statement resets the exception and
the method continues to execute, failing at the new assert. To resolve the new problem, we add a return statement after

the StringAssert. Retesting confirms that we have fixed our problems. Our final version of the
Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange looks like the following:

C#
[TestMethod]
public void Debit_WhenAmountIsMoreThanBalance_ShouldThrowArgumentOutOfRange()
{
// arrange
double beginningBalance = 11.99;
double debitAmount = 20.0;
BankAccount account = new BankAccount("Mr. Bryan Walton", beginningBalance);
// act
try
{
account.Debit(debitAmount);
}
catch (ArgumentOutOfRangeException e)
{
// assert
StringAssert.Contains(e.Message, BankAccount. DebitAmountExceedsBalanceMessage);
return;
}
Assert.Fail("No exception was thrown.");
}

In this final section, the work that we did improving our test code led to more robust and informative test methods. But
more importantly, the extra analysis also led to better code in our project under test.

© 2016 Microsoft

02.09.2016 13:49

Quick Start: Test Driven Devel opment with Test Explorer https://msdn.mi crosoft.com/en-ug/library/hh212233(d=printer).aspx

Quick Start: Test Driven Development with
Test Explorer

Visual Studio 2015

We recommend that you create unit tests to help keep your code working correctly through many incremental steps of
development. There are several frameworks that you can use to write unit tests, including some developed by third parties.
Some test frameworks are specialized to testing in different languages or platforms. Test Explorer provides a single interface
for unit tests in any of these frameworks. Adapters are available for the most commonly-used frameworks, and you can write
your own adapters for other frameworks.

Test Explorer supersedes the unit test windows found in earlier editions of Visual Studio. Its benefits include:

® Run .NET, unmanaged, database and other kinds of tests using a single interface.
® Use the unit test framework of your choice, such as NUnit or MSTest frameworks.

® See in one window all the information that you need.

Using Test Explorer

1of9 02.09.2016 13:46

Quick Start: Test Driven Devel opment with Test Explorer https://msdn.mi crosoft.com/en-ug/library/hh212233(d=printer).aspx

Choose Run All to bwild and run tests
Bar indicates test progress and results

TestE|epllorer * MX
C'-,I:-E garch P -

!
Run All | Run... =
Failed Tests (1 of 1)

Show All Show a full list

SignatureTest PRI o ——— Select a result to show
more detail

Passed Tests (3 of 3)

Show All

'aQUtEKN{JHEEI'D < 1ms

@ SgRtValueRange <1 ms

@RDﬂtTES{Negatiuei'nput <1 ms

Signaturelest

ﬂTest Failed - SignatureTest

Message: Test method
Fabrikam.Math.UnitTest.UnitTest1.Signa-
tureTest threw exception:

System. ArguementOutOfRangeException:
Specified arguement was out of the range
of valide values.

Elapsed tme: 426 ms
Source: UnitTestl.cs line 14 Links open the code

4 StackTrace:

LocaiMath.SquareRootiDouble ¥)
UnitTestl.5ignatureTest()

To Run Unit Tests by using Test Explorer
1. Create unit tests that use the test frameworks of your choice.
For example, to create a test that uses the MSTest Framework:
a. Create a test project.
In the New Project dialog box, expand Visual Basic, Visual C#, or Visual C++, and then choose Test.
Select Unit Test Project.

b. Write each unit test as a method. Prefix each test method with the [TestMethod] attribute.

2. If individual tests have no dependencies that prevent them from being run in any order, turn on parallel test
-—
execution with the #= toggle button on the toolbar. This can noticeably reduce the time taken to run all the tests.

3. On the menu bar, choose Test, Run Unit Tests, All Tests.
The solution builds and the tests run.

Test Explorer opens and displays a summary of the results.

20f9 02.09.2016 13:46

Quick Start: Test Driven Devel opment with Test Explorer https://msdn.mi crosoft.com/en-ug/library/hh212233(d=printer).aspx

30f9

To see a full list of tests: Choose Show All in any category.

To see the details of a test result: Select the test in Test Explorer to view details such as exception messages in the
details pane.

To navigate to the code of a test: Double-click the test in Test Explorer, or choose Open Test on the shortcut menu.

To debug a test: Open the shortcut menu for one or more tests, and then choose Debug Selected Tests.

¢ Important

The results that are displayed are for the most recent run. The colored results bar shows only the results for the tests
that ran. For example, if you run several tests and some of them fail, and then run only the successful tests, then the
results bar will show all green.

[Note

If no test appears, make sure that you have installed an adapter to connect Test Explorer to the test framework that
you are using. For more information, see Using Different Test Frameworks with Test Explorer.

Walkthrough: Using Unit Tests to Develop a Method

This walkthrough demonstrates how to develop a tested method in C# using the Microsoft Unit Test framework. You can
easily adapt it for other languages, and to use other test frameworks such as NUnit. For more information, see Using
Different Test Frameworks.

Creating the Test and Method

1. Create a Visual C# Class Library project. This project will contain the code that we want to deliver. In this example, it
is named MyMath.

2. Create a Test project.

O In the New Project dialog, choose Visual C#, Test and then choose Unit Test Project.

02.09.2016 13:46

Quick Start: Test Driven Devel opment with Test Explorer https://msdn.mi crosoft.com/en-ug/library/hh212233(d=printer).aspx

4 0f 9

- = SOLUTION EXPLORER === = O X
UnitTestlcs %= » | Classlcs”)
\:L_’@E:“Cnlﬂlu—l "
#3 UnitTestProjectl UnitTestl - @ TestMethod1()
Search Solution Explorer [Ctrl+:)
[using System; -4 Ut I (Ctrl+ P

using Hi ft.\v .TestTools.U T ing: foats ‘ 3
using Microsoft.VMisualitudio. TestTools.UnitTesting ES Solution ‘MyMath' (2 projects)

El namespace UnitTestProjectl 4 é MyMath
{ [| [M Properties
st 545)
[= public class UnitTestl g [» =M References
(7 : y b £ Classles
TestMethod 3 ;)
= public void TestMethodl{) & UnitTestProjectl
{ P B Properties

=W References
£ UnitTestl.cs

=

L)
3. Write a basic test method. Verify the result obtained for a specific input:

o

[TestMethod]

public void BasicRooterTest()

{
// Create an instance to test:
Rooter rooter = new Rooter();
// Define a test input and output value:
double expectedResult = 2.0;
double input = expectedResult * expectedResult;
// Run the method under test:
double actualResult = rooter.SquareRoot(input);
// Verify the result:
Assert.AreEqual(expectedResult, actualResult,

delta: expectedResult / 100);

4. Generate the method from the test.
a. Place the cursor on Rooter, and then on the shortcut menu choose Generate, New Type.

b.In the Generate New Type dialog box, set Project to the class library project. In this example, it is
MyMath.

c. Place the cursor on SquareRoot, and then on the shortcut menu choose Generate, Method Stub.
5. Run the unit test.
a. On the Test menu, choose Run Unit Tests, All Tests.
The solution builds and runs.
Test Explorer opens and displays the results.

The test appears under Failed Tests.

02.09.2016 13:46

Quick Start: Test Driven Devel opment with Test Explorer

6. Select the name of the test.

The details of the test appear in the lower part of Test Explorer.

7. Select the items under Stack Trace to see where the test failed.

Test Explorer * [

Ly H 'E conich

Rootercs £ X
il #3 MyMath.Rooter

Run All | Run..

https://msdn.mi crosoft.com/en-ug/library/hh212233(d=printer).aspx

unittestlcs

B using System;
| using System.Collections.Generic;

. ' SquareRootidouble input)

Failed Tests (1 of 1) using System.Ling;
Show All using System.Text;

(X} BasicRooterTest

|

El namespace MyMath
|

B public class Rooter

- | {
BasicRooterTest =l
|
Socurce: UnitTestl.csline 12 | {
B Test Failed - BasicRooterTest = 1
= }

Message: Test method 3
UnitTestProjectl.UnitTestl.BasicRooter it
Test threw exception:
System.NotImplementedException: The

method or operation is not

implemented.

Elapsed time: 384 ms

4 StackTrace:

Rooter SquareRootiDoublz input

UnitTestl. BasicRooterTest])

Lhrow new Nof

public double SgquareRooti{double input}

ImplementedException{);

At this point, you have created a test and a stub that you will modify so that the test passes.

After every change, make all the tests pass

1. In MyMath\Rooter.cs, improve the code of SquareRoot:

o

public double SquareRoot(double input)
{

return input / 2;

}

2.1In Test Explorer, choose Run All.
The code builds and the test runs.

The test passes.

50f9

02.09.2016 13:46

Quick Start: Test Driven Devel opment with Test Explorer https://msdn.mi crosoft.com/en-ug/library/hh212233(d=printer).aspx

Test Explorer * [X

G liz-= - P -

Run All | Run.. =

Passed Tests (1 of 1)
Show All

) BasicRooterTest 258 ms

Summary
Last Test Run Passed (Total Run Time C:00:01)
) Test Passed

Add tests to extend the range of inputs

1. To improve your confidence that your code works in all cases, add tests that try a broader range of input values.

? Tip
Avoid altering existing tests that pass. Instead, add new tests. Change existing tests only when the user

requirements change. This policy helps ensure that you don’t lose existing functionality as you work to extend
the code.

In your test class, add the following test, which tries a range of input values:

o

60f 9 02.09.2016 13:46

Quick Start: Test Driven Devel opment with Test Explorer https://msdn.mi crosoft.com/en-ug/library/hh212233(d=printer).aspx

[TestMethod]
public void RooterValueRange()
{
// Create an instance to test:
Rooter rooter = new Rooter();
// Try a range of values:
for (double expectedResult = le-8;
expectedResult < 1e+8;
expectedResult = expectedResult * 3.2)
{
RooterOneValue(rooter, expectedResult);
}
}

private void RooterOneValue(Rooter rooter, double expectedResult)

{
double input = expectedResult * expectedResult;
double actualResult = rooter.SquareRoot(input);
Assert.AreEqual(expectedResult, actualResult,
delta: expectedResult / 1000);

2.In Test Explorer, choose Run All.
The new test fails, although the first test still passes.

To find the point of failure, select the failing test and then in the lower part of Test Explorer, select the top item of
the Stack Trace.

3. Inspect the method under test to see what might be wrong. In the MyMath.Rooter class, rewrite the code:

public double SquareRoot(double input)
{

double result = input;

double previousResult = -input;

while (Math.Abs(previousResult - result) > result / 1000)
{

previousResult = result;
result = result - (result * result - input) / (2 * result);

}

return result;

4.1n Test Explorer, choose Run All.

Both tests now pass.

Add tests for exceptional cases

70f9 02.09.2016 13:46

Quick Start: Test Driven Devel opment with Test Explorer https://msdn.mi crosoft.com/en-ug/library/hh212233(d=printer).aspx

1. Add a test for negative inputs:

C#
[TestMethod]
public void RooterTestNegativeInputx()
{
Rooter rooter = new Rooter();
try
{
rooter.SquareRoot(-10);
}
catch (ArgumentOutOfRangeException e)
{
return;
}

Assert.Fail();

2.In Test Explorer, choose Run All.

The method under test loops, and must be canceled manually.
3. Choose Cancel.

The test stops after 10 seconds.
4. Fix the method code:

C#

public double SquareRoot(double input)

{
if (input <= 0.0)
{
throw new ArgumentOutOfRangeException();
}

5.1n Test Explorer, choose Run All.

All the tests pass.

Refactor without changing tests

1. Simplify the code, but do not change the tests.

? Tip

8of 9 02.09.2016 13:46

Quick Start: Test Driven Devel opment with Test Explorer

90of 9

A refactoring is a change that is intended to make the code perform better or to make the code easier to
understand. It is not intended to alter the behavior of the code, and therefore the tests are not changed.

https://msdn.mi crosoft.com/en-ug/library/hh212233(d=printer).aspx

We recommend that you perform refactoring steps separately from steps that extend functionality. Keeping the

tests unchanged gives you confidence that you have not accidentally introduced bugs while refactoring.

o

{
{

public class Rooter

public double SquareRoot(double input)

if (input <= 0.0)

{
throw new ArgumentOutOfRangeException();
}
double result = input;
double previousResult = -input;

while (Math.Abs(previousResult - result) > result / 1000)
{
previousResult = result;
result = (result + input / result) / 2;
//was: result = result - (result * result - input) / (2*result);

}

return result;

2. Choose Run All.

All the tests still pass.

Test Explorer * [X

S -8 e p-

Run All | Run..

Passed Tests (3 of 3)

Show All

&) BasicRooterTest 264 ms
) RooterValueRange <1ms
0 RooterTesthegativelnput <1 ms
Summary

Last Test Run Passed (Total Run Time O:00:00)
) 3 Tests Passed

© 2016 Microsoft

02.09.2016 13:46

Isolating Code Under Test with Microsoft Fakes https://msdn.mi crosoft.com/en-us/library/hh549175(d=printer).aspx

Isolating Code Under Test with Microsoft
Fakes

Visual Studio 2015

Microsoft Fakes help you isolate the code you are testing by replacing other parts of the application with stubs or shims.
These are small pieces of code that are under the control of your tests. By isolating your code for testing, you know that if
the test fails, the cause is there and not somewhere else. Stubs and shims also let you test your code even if other parts of
your application are not working yet.

Fakes come in two flavors:

® A stub replaces a class with a small substitute that implements the same interface. To use stubs, you have to design
your application so that each component depends only on interfaces, and not on other components. (By
"component” we mean a class or group of classes that are designed and updated together and typically contained in
an assembly.)

® A shim modifies the compiled code of your application at run time so that instead of making a specified method call,
it runs the shim code that your test provides. Shims can be used to replace calls to assemblies that you cannot
modify, such .NET assemblies.

[MyTests | | My Tests

= | Shim methods | 9

My I | My :
I Component F il 1 Component |
re— ..-_ ..-_ L i - e —

" Other Component '
System.dll ‘ (not build vet) System.dll ‘

: a

Stub component |

Othear . Stub website | Stub database |

External Company

website database applications
Ceployed component depends on external parts that Component isolated for testing, The stubs and shims
are incomplete or exhibit variable behavior. work under the control of the tests.

Requirements

® Visual Studio Enterprise

Choosing between stub and shim types

Typically, you would consider a Visual Studio project to be a component, because you develop and update those classes
at the same time. You would consider using stubs and shims for calls that the project makes to other projects in your
solution, or to other assemblies that the project references.

lof5 02.09.2016 13:51

Isolating Code Under Test with Microsoft Fakes https://msdn.mi crosoft.com/en-us/library/hh549175(d=printer).aspx

20f5

As a general guide, use stubs for calls within your Visual Studio solution, and shims for calls to other referenced
assemblies. This is because within your own solution it is good practice to decouple the components by defining
interfaces in the way that stubbing requires. But external assemblies such as System.dll typically are not provided with
separate interface definitions, so you must use shims instead.

Other considerations are:

Performance. Shims run slower because they rewrite your code at run time. Stubs do not have this performance
overhead and are as fast as virtual methods can go.

Static methods, sealed types. You can only use stubs to implement interfaces. Therefore, stub types cannot be used for
static methods, non-virtual methods, sealed virtual methods, methods in sealed types, and so on.

Internal types. Both stubs and shims can be used with internal types that are made accessible by using the assembly
attribute InternalsVisibleToAttribute.

Private methods. Shims can replace calls to private methods if all the types on the method signature are visible. Stubs
can only replace visible methods.

Interfaces and abstract methods. Stubs provide implementations of interfaces and abstract methods that can be used
in testing. Shims can't instrument interfaces and abstract methods, because they don’t have method bodies.

In general, we recommend that you use stub types to isolate from dependencies within your codebase. You can do this by
hiding the components behind interfaces. Shim types can be used to isolate from third-party components that do not
provide a testable APL

Getting started with stubs

For a more detailed description, see Using stubs to isolate parts of your application from each other for unit testing.

1. Inject interfaces

To use stubs, you have to write the code you want to test in such a way that it does not explicitly mention classes in
another component of your application. By "component” we mean a class or classes that are developed and
updated together, and typically contained in one Visual Studio project. Variables and parameters should be
declared by using interfaces and instances of other components should be passed in or created by using a factory.
For example, if StockFeed is a class in another component of the application, then this would be considered bad:

return (new StockFeed()).GetSharePrice("C000"); // Bad

Instead, define an interface that can be implemented by the other component, and which can also be implemented
by a stub for test purposes:

VB
Public Function GetContosoPrice(feed As IStockFeed) As Integer

Return feed.GetSharePrice("CO00")
End Function

2. Add Fakes Assembly

02.09.2016 13:51

Isolating Code Under Test with Microsoft Fakes https://msdn.mi crosoft.com/en-us/library/hh549175(d=printer).aspx

a.In Solution Explorer, expand the test project’s reference list. If you are working in Visual Basic, you must
choose Show All Files in order to see the reference list.

b. Select the reference to the assembly in which the interface (for example IStockFeed) is defined. On the
shortcut menu of this reference, choose Add Fakes Assembly.

c. Rebuild the solution.

3. Inyour tests, construct instances of the stub and provide code for its methods:

VB

<TestClass()> _
Class TestStockAnalyzer

<TestMethod()> _
Public Sub TestContosoStockPrice()
' Arrange:
' Create the fake stockFeed:
Dim stockFeed As New StockAnalysis.Fakes.StubIStockFeed
With stockFeed
.GetSharePriceString = Function(company)
Return 1234
End Function
End With
' In the completed application, stockFeed would be a real one:
Dim componentUnderTest As New StockAnalyzer(stockFeed)

" Act:
Dim actualValue As Integer = componentUnderTest.GetContosoPrice
' Assert:
Assert.AreEqual(1234, actualValue)
End Sub
End Class

The special piece of magic here is the class StubIStockFeed. For every interface in the referenced assembly, the
Microsoft Fakes mechanism generates a stub class. The name of the stub class is the derived from the name of the
interface, with "Fakes.Stub" as a prefix, and the parameter type names appended.

Stubs are also generated for the getters and setters of properties, for events, and for generic methods. For more
information, see Using stubs to isolate parts of your application from each other for unit testing.

Getting started with shims

(For a more detailed description, see Using shims to isolate your application from other assemblies for unit testing.)

Suppose your component contains calls to DateTime. Now:

C#

// Code under test:

30f5 02.09.2016 13:51

Isolating Code Under Test with Microsoft Fakes https://msdn.mi crosoft.com/en-us/library/hh549175(d=printer).aspx

public int GetTheCurrentYear()
{

return DateTime.Now.Year;

During testing, you would like to shim the Now property, because the real version inconveniently returns a different value

at every call.

To use shims, you don't have to modify the application code or write it a particular way.

1. Add Fakes Assembly

In Solution Explorer, open your unit test project’s references and select the reference to the assembly that contains
the method you want to fake. In this example, the DateTime class is in System.dll. To see the references in a Visual

Basic project, choose Show All Files.
Choose Add Fakes Assembly.

2. Insert a shim in a ShimsContext

VB
<TestClass()> _
Public Class TestClassl
<TestMethod()> _
Public Sub TestCurrentYear()
Using s = Microsoft.QualityTools.Testing.Fakes.ShimsContext.Create()
Dim fixedYear As Integer = 2000
' Arrange:
' Detour DateTime.Now to return a fixed date:
System.Fakes.ShimDateTime.NowGet = _
Function() As DateTime
Return New DateTime(fixedYear, 1, 1)
End Function
' Instantiate the component under test:
Dim componentUnderTest = New MyComponent()
" Act:
Dim year As Integer = componentUnderTest.GetTheCurrentYear
' Assert:
' This will always be true if the component is working:
Assert.AreEqual(fixedYear, year)
End Using
End Sub
End Class

Shim class names are made up by prefixing Fakes.Shim to the original type name. Parameter names are
appended to the method name. (You don’t have to add any assembly reference to System.Fakes.)

The previous example uses a shim for a static method. To use a shim for an instance method, write Al1Instances

4 0of 5 02.09.2016 13:51

Isolating Code Under Test with Microsoft Fakes https://msdn.mi crosoft.com/en-us/library/hh549175(d=printer).aspx

between the type name and the method name:

System.IO.Fakes.ShimFile.AllInstances.ReadToEnd = ...

(There is no 'System.IO.Fakes’ assembly to reference. The namespace is generated by the shim creation process. But you
can use ‘using’ or 'Import’ in the usual way.)

You can also create shims for specific instances, for constructors, and for properties. For more information, see Using
shims to isolate your application from other assemblies for unit testing.

In this section

Using stubs to isolate parts of your application from each other for unit testing
Using shims to isolate your application from other assemblies for unit testing

Code generation, compilation, and naming conventions in Microsoft Fakes

© 2016 Microsoft

50f 5 02.09.2016 13:51

How To: Create a Data-Driven Unit Test https://msdn.mi crosoft.conven-ug/library/ms182527(d=printer).aspx

How To: Create a Data-Driven Unit Test

Visual Studio 2015

Using the Microsoft unit test framework for managed code, you can set up a unit test method to retrieve values used in the
test method from a data source. The method is run successively for each row in the data source, which makes it easy to test a
variety of input by using a single method.

This topic contains the following sections:

® The method under test
® (Creating a data source
® Adding a TestContext to the test class
® Writing the test method
O Specifying the DataSourceAttribute
O Using TestContext.DataRow to access the data

® Running the test and viewing results
Creating a data-driven unit test involves the following steps:

1. Create a data source that contains the values that you use in the test method. The data source can be any type that is
registered on the machine that runs the test.

2. Add a private TestContext field and a public TestContext property to the test class.
3. Create a unit test method and add a DataSourceAttribute attribute to it.

4. Use the DataRow indexer property to retrieve the values that you use in a test.

The method under test

As an example, let's assume that we have created:

1. A solution called MyBank that accepts and processes transactions for different types of accounts.
2. A project in MyBank called BankDb that manages the transactions for accounts.

3. A class called Maths in the DbBank project that performs the mathematical functions to ensure that any transaction
is advantageous to the bank.

lof5 02.09.2016 13:51

How To: Create a Data-Driven Unit Test https://msdn.mi crosoft.conven-ug/library/ms182527(d=printer).aspx

4. A unit test project called BankDbTests to test the behavior of the BankDb component.

5. A unit test class called MathsTests to verify the behavior of the Maths class.

We will test a method in Maths that adds two integers using a loop:

public int AddIntegers(int first, int second)

{
int sum = first;
for(int i = @; i < second; i++)
{
sum += 1;
}
return sum;
}

Creating a data source

To test the AddIntegers method, we create a data source that specifies a range of values for the parameters and the sum
that you expect to be returned. In our example, we create a Sql Compact database named MathsData and a table named
AddIntegersData that contains the following column names and values

FirstNumber @ SecondNumber Sum

0 1 1
1 1 2
2 -3 -1

Adding a TestContext to the test class

The unit test framework creates a TestContext object to store the data source information for a data-driven test. The
framework then sets this object as the value of the TestContext property that we create.

private TestContext testContextInstance;
public TestContext TestContext

{

20f5 02.09.2016 13:51

How To: Create a Data-Driven Unit Test https://msdn.mi crosoft.conven-ug/library/ms182527(d=printer).aspx

get { return testContextInstance; }
set { testContextInstance = value; }

In your test method, you access the data through the DataRow indexer property of the TestContext.

Writing the test method

The test method for AddIntegers is fairly simple. For each row in the data source, we call AddIntegers with the
FirstNumber and SecondNumber column values as parameters, and we verify the return value against Sum column
value:

[DataSource(@"Provider=Microsoft.SqlServerCe.Client.4.0; Data Source=C:\Data
\MathsData.sdf;", "Numbers")]

[TestMethod()]

public void AddIntegers_FromDataSourceTest()

{

var target = new Maths();

// Access the data
int x = Convert.ToInt32(TestContext.DataRow["FirstNumber"]);
int y = Convert.ToInt32(TestContext.DataRow["SecondNumber"]);
int expected = Convert.ToInt32(TestContext.DataRow["Sum"]);
int actual = target.IntegerMethod(x, y);
Assert.AreEqual(expected, actual,

"x:<{0}> y:<{1}>",

new object[] {x, y});

Note that the Assert method includes a message that displays the x and y values of a failed iteration. By default, the
asserted values, expected and actual, are already included in the details of a failed test.

Specifying the DataSourceAttribute

The DataSource attribute specifies the connection string for the data source and the name of the table that you use in
the test method. The exact information in the connection string differs, depending on what kind of data source you are
using. In this example, we used a SqlServerCe database.

[DataSource(@"Provider=Microsoft.SqlServerCe.Client.4.0;Data Source=C:\Data

30f5 02.09.2016 13:51

How To: Create a Data-Driven Unit Test https://msdn.mi crosoft.conven-ug/library/ms182527(d=printer).aspx

4 0of 5

\MathsData.sdf", "AddIntegersData")]

The DataSource attribute has three constructors.

[DataSource(dataSourceSettingName)]

A constructor with one parameter uses connection information that is stored in the app.config file for the solution. The
dataSourceSettingsName is the name of the Xml element in the config file that specifies the connection information.

Using an app.config file allows you to change the location of the data source without making changes to the unit test
itself. For information about how to create and use an app.config file, see Walkthrough: Using a Configuration File to
Define a Data Source

[DataSource(connectionString, tableName)]

The DataSource constructor with two parameters specifies the connection string for the data source and the name of
the table that contains the data for the test method.

The connection strings depend on the type of the type of data source, but it should contain a Provider element that
specifies the invariant name of the data provider.

[DataSource(
dataProvider,
connectionString,
tableName,
dataAccessMethod

)]

Using TestContext.DataRow to access the data

To access the data in the AddIntegersData table, use the TestContext.DataRow indexer. DataRow is a DataRow

object, so we retrieve column values by index or column names. Because the values are returned as objects, we need to
convert them to the appropriate type:

int x = Convert.ToInt32(TestContext.DataRow["FirstNumber"]);

02.09.2016 13:51

How To: Create a Data-Driven Unit Test https://msdn.mi crosoft.conven-ug/library/ms182527(d=printer).aspx

50f 5

Running the test and viewing results

When you have finished writing a test method, build the test project. The test method appears in the Test Explorer
window in the Not Run Tests group. As you run, write, and rerun your tests, Test Explorer displays the results in groups
of Failed Tests, Passed Tests, and Not Run Tests. You can choose Run All to run all your tests, or choose Run... to
choose a subset of tests to run.

The test results bar at the top of the Explorer is animated as your test runs. At the end of the test run, the bar will be green
if all of the tests have passed or red if any of the tests have failed. A summary of the test run appears in the details pane at
the bottom of the Test Explorer window. Select a test to view the details of that test in the bottom pane.

If you ran the AddIntegers_FromDataSourceTest method in our example, the results bar turns red and the test method

is moved to the Failed Tests A data-driven test fails if any of the iterated methods from the data source fails. When you
choose a failed data-driven test in the Test Explorer window, the details pane displays the results of each iteration that is
identified by the data row index. In our example, it appears that the AddIntegers algorithm does not handle negative

values correctly.

When the method under test is corrected and the test rerun, the results bar turns green and the test method is moved to
the Passed Test group.

See Also

Microsoft.VisualStudio.TestTools.UnitTesting.DataSourceAttribute
Microsoft.VisualStudio.TestTools.UnitTesting.TestContext

TestContext.DataRow

Microsoft.VisualStudio.TestTools.UnitTesting.Assert

How to: Create and Run a Unit Test

Unit Test Your Code

Run unit tests with Test Explorer

Writing Unit Tests for the .NET Framework with the Microsoft Unit Test Framework for Managed Code

© 2016 Microsoft

02.09.2016 13:51

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

1of 17

Use UI Automation To Test Your Code

Visual Studio 2015

Automated tests that drive your application through its user interface (Ul) are known as coded Ul tests (CUITs). These tests
include functional testing of the UI controls. They let you verify that the whole application, including its user interface, is
functioning correctly. Coded Ul Tests are particularly useful where there is validation or other logic in the user interface, for
example in a web page. They are also frequently used to automate an existing manual test.

As shown in the following illustration, a typical development experience might be one where, initially, you simply build your
application (F5) and click through the UI controls to verify that things are working correctly. You then might decide to create
a coded test so that you don't need to continue to test the application manually. Depending on the particular functionality
being tested in your application, you can write code for either a functional test, or for an integration test that might or
might not include testing at the Ul level. If you simply want to directly access some business logic, you might code a unit
test. However, under certain circumstances, it can be beneficial to include testing of the various UI controls in your
application. A coded Ul test can automate the initial (F5) scenario, verifying that code churn does not impact the
functionality of your application.

F5 experience Typical non-CUIT test Typical use of CUITs Tests that verify the
- build and manually test - testing the whole - testing the whole user interface
whale application through application not through application through the UI - testing the UL in isolation
the UI the UI {for example, unit automatically
tests)
R Coded UI Coded UI
et Tests Tests
User Integration User User
interface tests interface interface
Biz logic Biz logic Biz logic Fake
business
! ! l logic
database database database
Manual Coded

Creating a coded Ul test is easy. You simply perform the test manually while the CUIT Test Builder runs in the background.
You can also specify what values should appear in specific fields. The CUIT Test Builder records your actions and generates
code from them. After the test is created, you can edit it in a specialized editor that lets you modify the sequence of actions.

Alternatively, if you have a test case that was recorded in Microsoft Test Manager, you can generate code from that. For
more information, see Record and play back manual tests.

The specialized CUIT Test Builder and editor make it easy to create and edit coded UI tests even if your main skills are
concentrated in testing rather than coding. But if you are a developer and you want to extend the test in a more advanced
way, the code is structured so that it is straightforward to copy and adapt. For example, you might record a test to buy
something at a website, and then edit the generated code to add a loop that buys many items.

02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

Requirements
® Visual Studio Enterprise

For more information about which platforms and configurations are supported by coded Ul tests, see Supported
Configurations and Platforms for Coded UI Tests and Action Recordings.

In this topic

® Creating Coded UI Tests

O Main procedure

O Starting and stopping the application

O Validating the properties of UI Controls
® Customizing your coded UI test

O The Generated Code

O Coding UI control actions and properties

O Debugging

® \What's Next

Creating Coded Ul Tests

1. Create a Coded UI Test project.

Coded Ul tests must be contained in a coded Ul test project. If you don't already have a coded Ul test project,
create one. In Solution Explorer, on the shortcut menu of the solution, choose Add, New Project and then select
either Visual Basic or Visual C#. Next, choose Test, Coded UI Test.

O | don't see the Coded Ul Test project templates.

You might be using a version of Visual Studio that does not support coded Ul tests. To create coded UI
tests, you must use Visual Studio Enterprise.

2. Add a coded UI test file.

If you just created a Coded UI project, the first CUIT file is added automatically. To add another test file, open the
shortcut menu on the coded Ul test project, point to Add, and then choose Coded UI Test.

2 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code

@l o2 QHF PR @

https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

In Solution Explorer, open the

| 1P

Search Solution Explorer (Ctrl+;)
test project.

[solution ‘CodeliTe

o

Ez Build
Rebuild i i}
Clean -| Point to Add.

Run Code Analysis
Scope to This

New Solution Expla

R |

)

[

2 Web Performance Test...
Z Coded UITest.
= Ordered Test

1
i—

v shortcut menu on the coded UI

[Choose Coded UI Tests.

In the Generate Code for Coded UI Test dialog box, choose Record actions, edit Ul map or add assertions.

Generate Code for Coded UI Test

How do you want to create your coded Ul test?

ﬂ The code file for the coded Ul test has been added to your test project. To
generate code for this test, you can select from the aptions below,

@ Record actions, edit Ul map or add assertions
Perfarm tasks in your application and generate code for your actions.

=)

! ; i.- E.Il

| Select Racord actio ns,

[Use an existion action recording

Generate code that performs the same actions as the action recording that
is associated with the test case or share steps,

edit Ul map or add
| assertions,

s 9
I'H 5:.:—"

—— =
E_ (n]4 __i|[Cancel

The Coded UI Test Builder appears and Visual Studio is minimized.

—'[Choose the Record icon.

UTITap - Coded UI Test Bullder ? X —| Close to finish recording

P @ | ®@ =
|~| Generate code
Add assertions
Edit steps
—| Record/Pause/Resume

3. Record a sequence of actions.

3of 17

T Choose QK.

02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

To start recording, choose the Record icon. Perform the actions that you want to test in your application,
including starting the application if that is required.

For example, if you are testing a web application, you might start a browser, navigate to the web site, and log in to
the application.

To pause recording, for example if you have to deal with incoming mail, choose Pause.

& Warning
All actions performed on the desktop will be recorded. Pause the recording if you are performing actions that
may lead to sensitive data being included in the recording.

To delete actions that you recorded by mistake, choose Edit Actions.

To generate code that will replicate your actions, choose the Generate Code icon and type a name and
description for your coded Ul test method.

4. Verify the values in UI fields such as text boxes.

Choose Add Assertions in the Coded UI Test Builder, and then choose a UI control in your running application. In
the list of properties that appears, select a property, for example, Text in a text box. On the shortcut menu, choose
Add Assertion. In the dialog box, select the comparison operator, the comparison value, and the error message.

Close the assertion window and choose Generate Code.

o' Add two numbers |_._—_._|| __E]_|

(]
|

—| This is your app.

UlMap - CodedyU] Test Builder T X
@ g
? Tip

Alternate between recording actions and verifying values. Generate code at the end of each sequence of actions
or verifications. If you want, you will be able to insert new actions and verifications later.

4 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

For more details, see Validating Properties of Controls.
5. View the generated test code.

To view the generated code, close the Ul Test Builder window. In the code, you can see the names that you gave to
each step. The code is in the CUIT file that you created:

o

[CodedUITest]
public class CodedUITestl

{

[TestMethod]

public void CodedUITestMethodl1()

{
this.UIMap.AddTwoNumbers();
this.UIMap.VerifyResultValue();
// To generate more code for this test, select
// "Generate Code" from the shortcut menu.

6. Add more actions and assertions.

Place the cursor at the appropriate point in the test method and then, on the shortcut menu, choose Generate
Code for Coded UI Test. New code will be inserted at that point.

7. Edit the detail of the test actions and the assertions.

Open UIMap.uitest. This file opens in the Coded UI Test Editor, where you can edit any sequence of actions that
you recorded as well as edit your assertions.

R EETATTECS - CodedU] Testl.cs”
PX I p|eE O

L Actions Ll Contral Map

4 ‘D AssertForAddTwoNumbers 4 UlMap

VYerify that the ‘ControiType’ property of ‘textbox3’ text box... b UluserPromotedMotificawindow

b E- RecordedMethodl T UlltemWindow
b0 ulProgrammanagerwindow
4 |1 UladdtwonumbersWindow

UlTextBox IWindow
UITextBox2Window
UAddWindow

U TextBox3Window
B UlTextBox3Edit

[

I

L\?vwl

[

For more information, see Editing Coded UI Tests Using the Coded UI Test Editor.

8. Run the test.

5of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

Use Test Explorer, or open the shortcut menu in the test method, and then choose Run Tests. For more
information about how to run tests, see Run unit tests with Test Explorer and Additional options for running coded
Ul tests in the What's next? section at the end of this topic.

The remaining sections in this topic provide more detail about the steps in this procedure.

For a more detailed example, see Walkthrough: Creating, Editing and Maintaining a Coded UI Test. In the walkthrough,
you will create a simple Windows Presentation Foundation (WPF) application to demonstrate how to create, edit, and
maintain a coded Ul test. The walkthrough provides solutions for correcting tests that have been broken by various
timing issues and control refactoring.

Starting and stopping the application under test

I don't want to start and stop my application, browser, or database separately for each test. How do | avoid that?

® | |If you do not want to record the actions to start your application under test, you must start your application
before you choose the Record icon.

® At the end of a test, the process in which the test runs is terminated. If you started your application in the test,
the application usually closes. If you do not want the test to close your application when it exits, you must add a
.runsettings file to your solution and use the KeepExecutorAliveAfterLegacyRun option. For more
information, see Configure unit tests by using a .runsettings file.

® || You can add a test initialize method, identified by a [Testlnitialize] attribute, which runs code at the start of
each test method. For example, you could start the application from the Testlnitialize method.

® || You can add a test cleanup method, identified by a [TestCleanup] attribute, that runs code at the end of each
test method. For example, the method to close the application could be called from the TestCleanup method.

Validating the properties of UI controls

You can use the Coded UI Test Builder to add a user interface (UI) control to the
T:Microsoft.VisualStudio.TestTools.UITest. Common.UIMap.UIMap for your test, or to generate code for a validation
method that uses an assertion for a UI control.

To generate assertions for your UI controls, choose the Add Assertions tool in the Coded UI Test Builder and drag it to
the control on the application under test that you want to verify is correct. When the box outlines your control, release
the mouse. The control class code is immediately created in the UIMap.Designer.cs file.

6 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

ol Add two numbers | = || 5] [k

—1 This is your app.

UlMap - CodedyUl Test Builder T

The properties for this control are now listed in the Add Assertions dialog box.

Another way of navigating to a particular control is to choose the arrow (< <) to expand the view for the UI Control

Map. To find a parent, sibling, or child control, you can click anywhere on the map and use the arrow keys to move
around the tree.

Coded U] Test Builder - Add Assertions: UlClearButton

T X
X ko » | E Add Assertion
4 UlAddtwanumbersWindow £k Property value
4 + UIClearButton 4 Search -
UIClearButton ControfType Button
TechnologyMame MESAA
Mame Clear =
4 Control Specific
HelpText
Accesskey
ControlName button2
Controlid 0
AccessibleDescription
DisplayText Clear .
L m -

® | don't see any properties when | select a control in my application, or | don't see the control in the Ul Control
Map.

In the application code, the control that you want to verify must have a unique ID, such as an HTML ID attribute,
or a WPF UId. You might need to update the application code to add these IDs.

Next, open the shortcut menu on the property for the Ul control that you want to verify, and then point to Add

Assertion. In the Add Assertion dialog box, select the Comparator for your assertion, for example AreEqual, and type
the value for your assertion in Comparison Value.

7 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

Codad U Test Builday - Add Assertions: UIC|e... 7
L4 = Add Assertion

L Propecty Walua

4| Add assertion for: ControlType 7x *

Camparator:

Aretgual v

Comparison Value:

Buttan

UI Control Map

Message on Assertion Failure:

i)

EGK Cancel |

When you have added all your assertions for your test, choose OK.

To generate the code for your assertions and add the control to the UI map, choose the Generate Code icon. Type a
name for your coded UI test method and a description for the method, which will be added as comments for the
method. Choose Add and Generate. Next, choose the Close icon to close the Coded UI Test Builder. This generates
code similar to the following code. For example, if the name you entered is AssertForAddTwoNumbers, the code will

look like this example:

® Adds a call to the assert method AssertForAddTwoNumbers to the test method in your coded Ul test file:

[TestMethod]
public void CodedUITestMethodl1()

{
this.UIMap.AddTwoNumbers();

this.UIMap.AssertForAddTwoNumbers();

You can edit this file to change the order of the steps and assertions, or to create new test methods. To add
more code, place the cursor on the test method and on the shortcut menu choose Generate Code for Coded

UI Test.

® Adds a method called AssertForAddTwoNumbers to your Ul map (UIMap.uitest). This file opens in the Coded UI
Test Editor, where you can edit the assertions.

8 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code

9of 17

UiMapuitect® 4 X CodedUlTestl.cs"
P X Ja| Gee B3 D
Ul Actions

https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

Ul Control Map

- 'D AssertForAddTwoNumbers

4 .?5—- RecordedMethodl
Type '1'in 'textBox1" text box
Type ‘2’ in ‘textBox2 text box
Click ‘Add’ button
Click "textBox3' text box

Properties

=2 | s

[=] Common Properties
Continue On Errar False
Ul Contral

[] Specific Properties

Assert Condition AreEqual

Expected Value 3

Praperty Name ContradType

I¥pe of Expected Value Siring

Expected Value
The expected value.

microsoftVisualStudio. TestTools. FowerToals. Ul TestEditor.Madel.,

UIMap UTAddtwonumbersWind...

4 [uiMap

P T UlUserPromotediatificawindow
b UlltemWindow
b UIProgramManagerWindow

[

1 urAddtwonumb ersWindow

UTextBoxIWindow
UlTextBox2Window
UlAddwindow

UlTextBox3Window
2] UlTextBox3Edit

1(

I

Tﬂx

b
P
b
4

(1L

ek

[=]

For more information, see Editing Coded UI Tests Using the Coded UI Test Editor.

You can also view the generated code of the assertion method in UIMap.Designer.cs. However, you should not
edit this file. If you want to make an adapted version of the code, copy the methods to another file such as

UIMap.cs, rename the methods, and edit them there.

public void AssertForAddTwoNumbers()
{

The control | want to select loses focus and disappears when I try to select the Add Assertions tool from the Coded Ul

Test Builder. How do | select the control?

Selecting a hidden control using the keyboard

Sometimes, when adding controls and validating their properties, you might have to use the keyboard. For
example, when you try to record a coded Ul test that uses a context menu control, the list of menu items in the
control will lose focus and disappear when you try to select the Add Assertions tool from the Coded UI Test
Builder. This is demonstrated in the following illustration, where the context menu in Internet Explorer will lose

02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

focus and disappear if you try to select it with the Add Assertions tool.

Coded Ul Test Buildar - Add Assertions: UIC|e.,, ? X
- .
& = Add fssertion * %
= g Q «,
Wiew source 'ﬁ]‘ Property Value
: 4 Search »
Encoding
3 chr ram MSAA
Brint._ =3 TechnologyMame g
3 ; = MName Encoding =
Print preview... - o]
= 4 Control Specific
Refresh E HeloTeit
. = Accesskey <]
Properties = :
ControlMame
Controiia 4]
AccessibleDescription
Checked False
HasChildModes True v
UItap - Coded Ul Test Bullder ? X

To use the keyboard to select a UI control, hover over the control with the mouse. Then hold down the Ctrl key
and the I key at the same time. Release the keys. The control is recorded by the Coded UT Test Builder.

& Warning

If you use Microsoft Lync, you must close Lync before you start the Coded UI Test Builder. Microsoft Lync
interferes with the Ctrl+1I keyboard shortcut.

I can't record a mouse hover on a control. Is there a way around this?
Manually recording mouse hovers

Under some circumstances, a particular control that's being used in a coded Ul test might require you to use the
keyboard to manually record mouse hover events. For example, when you test a Windows Form or a Windows
Presentation Foundation (WPF) application, there might be custom code. Or, there might be special behavior
defined for hovering over a control, such as a tree node expanding when a user hovers over it. To test
circumstances like these, you have to manually notify the Coded UI Test Builder that you are hovering over the
control by pressing predefined keyboard keys.

When you perform your coded Ul test, hover over the control. Then press and hold Ctrl, while you press and
hold the Shift and R keys on your keyboard. Release the keys. A mouse hover event is recorded by the Coded UT
Test Builder.

10 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

Mouse hover ‘Clear' button at (59 11)

UlMap - Coded Ul Test Bullder ? x

m- -

After you generate the test method, code similar to the following example will be added to the
UIMap.Desinger.cs file:

C#

// Mouse hover '1l' label at (87, 9)
Mouse.Hover(ulltemlText, new Point(87, 9));

The key assignment for capturing mouse hover events is being used elsewhere in my environment. Can | change the
default key assignment?

Configuring mouse hover keyboard assignments

If necessary, the default keyboard assignment of Ctrl+Shift+R that is used to apply mouse hovering events in
your coded Ul tests can be configured to use different keys.

& Warning

You should not have to change the keyboard assignments for mouse hover events under ordinary
circumstances. Use caution when reassigning the keyboard assignment. Your choice might already be in use
elsewhere within Visual Studio or the application being tested.

To change the keyboard assignments, you must modify the following configuration file:

<drive letter:>\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\CodedUITestBuilder.exe.config

In the configuration file, change the values for the HoverKeyModifier and HoverKey keys to modify the
keyboard assignments:

<!l-- Begin : Background Recorder Settings -->

<!l-- HoverKey to use. -->

<add key="HoverKeyModifier" value="Control, Shift"/>
<add key="HoverKey" value="R"/>

I'm having issues with recording mouse hovers on a website. Is there a fix for this, too?

Setting implicit mouse hovers for the web browser

In many websites, when you hover over a particular control, it expands to show additional details. Generally,

11 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

12 of 17

these look like menus in desktop applications. Because this is a common pattern, coded UI tests enable implicit
hovers for Web browsing. For example, if you record hovers in Internet Explorer, an event is fired. These events
can lead to redundant hovers getting recorded. Because of this, implicit hovers are recorded with
ContinueOnError set to true in the Ul test configuration file. This allows playback to continue if a hover event

fails.
To enable the recording of implicit hovers in a Web browser, open the configuration file:
<drive letter:>\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\CodedUITestBuilder.exe.config

Verify that the configuration file has the key RecordImplicitiHovers set to a to a value of true as shown in
the following sample:

<!--Use this to enable/disable recording of implicit hovers.-->
<add key="RecordImplicitHover" value="true"/>

Customizing your coded UI test

After you've created your coded Ul test, you can edit it by using any of the following tools in Visual Studio:

® Coded UI Test Builder: Use the Coded UI Test Builder to add additional controls and validation to your tests. See
the section Adding controls and validating their properties in this topic.

® Coded UI Test Editor: The Coded UI Test Editor lets you easily modify your coded Ul tests. Using the Coded Ul
Test Editor, you can locate, view, and edit your test methods. You can also edit UI actions and their associated
controls in the UI control map. For more information, see Editing Coded UI Tests Using the Coded UI Test Editor.

® Code Editor:

O Manually add code for the controls in your test as described in the Coding UI control actions and properties
section in this topic.

O After you create a coded Ul test, you can modify it to be data-driven. For more information, see Creating a
Data-Driven Coded UI Test.

O In a coded Ul test playback, you can instruct the test to wait for certain events to occur, such as a window to
appear, the progress bar to disappear, and so on. To do this, add the appropriate
UITestControl.WaitForControlXXX() method. For a complete list of the available methods, see Making
Coded UI Tests Wait For Specific Events During Playback. For an example of a coded Ul test that waits for a
control to be enabled using the WaitForControlEnabled method, see Walkthrough: Creating, Editing and
Maintaining a Coded UI Test.

O Coded Ul tests include support for some of the HTML5 controls that are included in Internet Explorer 9 and
Internet Explorer 10. For more information, see Using HTML5 Controls in Coded UI Tests.

O Coded UI test coding guidance:

02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

® Anatomy of a Coded UI Test
® Best Practices for Coded UI Tests
® Testing a Large Application with Multiple UI Maps

® Supported Configurations and Platforms for Coded UI Tests and Action Recordings

The Generated Code

When you choose Generate Code, several pieces of code are created:

® A line in the test method.

o

[CodedUITest]
public class CodedUITestl

{

[TestMethod]
public void CodedUITestMethod1()
{
this.UIMap.AddTwoNumbers();
// To generate more code for this test, select
// "Generate Code" from the shortcut menu. }

You can right-click in this method to add more recorded actions and verifications. You can also edit it manually
to extend or modify the code. For example, you could enclose some of the code in a loop.

You can also add new test methods and add code to them in the same way. Each test method must have the
[TestMethod] attribute.

® A method in UIMap.uitest

This method includes the detail of the actions you recorded or the value that you verified. You can edit this code
by opening UIMap.uitest. It opens in a specialized editor in which you can delete or refactor the recorded
actions.

You can also view the generated method in UIMap.Designer.cs. This method performs the actions that you
recorded when you run the test.

o

// File: UIMap.Designer.cs
public partial class UIMap
{

/// <summary>

/// Add two numbers

/// </summary>

public void AddTwoNumbers()

13 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

& Warning

You should not edit this file, because it will be regenerated when you create more tests.

You can make adapted versions of these methods by copying them to UIMap.cs. For example, you could make a
parameterized version that you could call from a test method:

C#

// File: UIMap.cs
public partial class UIMap // Same partial class

{
/// <summary>
/// Add two numbers - parameterized version
/// </summary>
public void AddTwoNumbers(int firstNumber, int secondNumber)
{ ... // Code modified to use parameters.
}
}

® Declarations in UIMap.uitest

These declarations represent the UI controls of the application that are used by your test. They are used by the
generated code to operate the controls and access their properties.

You can also use them if you write your own code. For example, you can have your test method choose a
hyperlink in a Web application, type a value in a text box, or branch off and take different testing actions based
on a valuein a field.

You can add multiple coded UI tests and multiple UI map objects and files to facilitate testing a large
application. For more information, see Testing a Large Application with Multiple UI Maps.

For more information about the generated code, see Anatomy of a Coded UI Test.

Coding UI control actions and properties

When you work with UI test controls in coded Ul tests they are separated into two parts: actions and properties.

® The first part consists of actions that you can perform on Ul test controls. For example, coded UI tests can
simulate mouse clicks on a UI test control, or simulate keys typed on the keyboard to affect a Ul test control.

® The second part consists of enabling you to get and set properties on a Ul test control. For example, coded UI
tests can get the count of items in a ListBox, or set a CheckBox to the selected state.

14 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

Accessing Actions of UI Test Control

To perform actions on Ul test controls, such as mouse clicks or keyboard actions, use the methods in the Mouse and
Keyboard classes:

® To perform a mouse-oriented action, such as a mouse click, on a Ul test control, use Click.

Mouse.Click(buttonCancel);

® To perform a keyboard-oriented action, such as typing into an edit control, use SendKeys.

Keyboard.SendKeys (textBoxDestination, @"C:\Temp\Output.txt");

Accessing Properties of UI Test Control

To get and set UI control specific property values, you can directly get or set the values the properties of a control, or
you can use the UlTestControl.GetProperty and UlTestControl.SetProperty methods with the name of the specific
property that you want you get or set.

GetProperty returns an object, which can then be cast to the appropriate Type. SetProperty accepts an object for the
value of the property.

To get or set properties from UI test controls directly

® With controls that derive from T:Microsoft.VisualStudio.TestTools.UITesting.UITestControl, such as
T:Microsoft.VisualStudio.TestTools.UITesting.HtmIControls.HtmlList or
T:Microsoft.VisualStudio.TestTools.UITesting.WinControls.WinComboBox, you can get or set their property
values directly, as follows:

int i = myHtmlList.ItemCount;
myWinCheckBox.Checked = true;
To get properties from UI test controls
® To get a property value from a control, use GetProperty.

® To specify the property of the control to get, use the appropriate string from the PropertyNames class in each
control as the parameter to GetProperty.

® GetProperty returns the appropriate data type, but this return value is cast as an Object. The return Object must
then be cast as the appropriate type.

Example:

int i = (int)GetProperty(myHtmlList.PropertyNames.ItemCount);

To set properties for Ul test controls

® To set a property in a control, use SetProperty.

® To specify the property of the control to set, use the appropriate string from the PropertyNames class as the

15 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

first parameter to SetProperty, with the property value as the second parameter.
Example:

SetProperty(myWinCheckBox.PropertyNames.Checked, true);

Debugging

You can analyze Coded Ul tests using coded Ul test logs. Coded Ul test logs filter and record important information
about your coded Ul test runs. The format of the logs lets you debug issues quickly. For more information, see
Analyzing Coded UI Tests Using Coded UI Test Logs.

What's next?

Additional options for running coded UI tests: You can run coded Ul tests directly from Visual Studio, as described
earlier in this topic. Additionally, you can run automated UI tests from Microsoft Test Manager, or from Team Foundation
Build. When coded Ul tests are automated, they have to interact with the desktop when you run them, unlike other
automated tests.

® How to: Run Tests from Microsoft Visual Studio

® Running Automated Tests in Microsoft Test Manager

How to: Configure and Run Scheduled Tests After Building Your Application

® Run tests in your build process

® Running automated tests from the command line
® How to: Set Up Your Test Agent to Run Tests that Interact with the Desktop
® [retired] Using Coded Ul Tests in Load Tests

Adding support for custom controls: The coded Ul testing framework does not support every possible Ul and might
not support the Ul you want to test. For example, you cannot immediately create a coded UI test of the UI for Microsoft
Excel. However, you can create an extension to the coded Ul testing framework that will support a custom control.

® Enable Coded UI Testing of Your Controls

® Extending Coded Ul Tests and Action Recordings to Support Microsoft Excel
Coded Ul Tests are often used to automate manual tests. For additional guidance, see Testing for Continuous Delivery
with Visual Studio 2012 — Chapter 5: Automating System Tests. For more information about manual tests, see [retired]

Creating Manual Test Cases Using Microsoft Test Manager. For more information about automated system tests, see
Creating Automated Tests Using Microsoft Test Manager.

16 of 17 02.09.2016 13:40

Use Ul Automation To Test Your Code https://msdn.mi crosoft.com/en-ug/library/dd286726(d=printer).aspx

External Resources

Guidance
Testing for Continuous Delivery with Visual Studio 2012 — Chapter 2: Unit Testing: Testing the Inside

Testing for Continuous Delivery with Visual Studio 2012 — Chapter 5: Automating System Tests

FAQ
Coded UI Tests FAQ - 1

Coded UI Tests FAQ -2

Forum
Visual Studio UI Automation Testing (includes CodedUI)

See Also

T:Microsoft.VisualStudio.TestTools.UITest. Common.UIMap.UIMap
Assert

Improve Code Quality

Walkthrough: Creating, Editing and Maintaining a Coded UI Test
Anatomy of a Coded UI Test

Best Practices for Coded UI Tests

Testing a Large Application with Multiple UI Maps

Editing Coded UI Tests Using the Coded UI Test Editor
Supported Configurations and Platforms for Coded UI Tests and Action Recordings
Upgrading Coded UI Tests from Visual Studio 2010

Generating a Coded UI Test from an Existing Action Recording

© 2016 Microsoft

17 of 17 02.09.2016 13:40

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

Walkthrough: Creating, Editing and
Maintaining a Coded UI Test

Visual Studio 2015

In this walkthrough, you will create a simple Windows Presentation Foundation (WPF) application to demonstrate how to
create, edit, and maintain a coded Ul test. The walkthrough provides solutions for correcting tests that have been broken by
various timing issues and control refactoring.

Prerequisites

For this walkthrough you will need:

® Visual Studio Enterprise

Create a Simple WPF Application

1. On the FILE menu, point to New, and then select Project.
The New Project dialog box appears.
2.1In the Installed pane, expand Visual C#, and then select Windows Desktop.
3. Above the middle pane, verify that the target framework drop-down list is set to .NET Framework 4.5.
4.1n the middle pane, select the WPF Application template.
5.1In the Name text box, type SimpleWPFApp.
6. Choose a folder where you will save the project. In the Location text box, type the name of the folder.
7. Choose OK.
The WPF Designer for Visual Studio opens and displays MainWindow of the project.
8. If the toolbox is not currently open, open it. Choose the VIEW menu, and then choose Toolbox.

9. Under the All WPF Controls section, drag a Button, CheckBox and ProgressBar control onto the MainWindow in
the design surface.

10. Select the Button control. In the Properties window, change the value for the Name property from <No Name> to
buttonl. Then change the value for the Content property from Button to Start.

11. Select the ProgressBar control. In the Properties window, change the value for the value for the Name property from
<No Name> to progressBarl. Then change the value for the Maximum property from 100 to 10000.

12. Select the Checkbox control. In the Properties window, change the value for the Name property from <No Name> to

1of 10 02.09.2016 13:41

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

checkBox1 and clear the IsEnabled property.

O m]

[[] Checkbox

L |

13. Double-click the button control to add a click event handler.
The MainWindow.xmal.cs is displayed in the Code Editor with the cursor in the new buttonl_Click method.

14. At the top of the MainWindow class, add a delegate. The delegate will be used for the progress bar. To add the
delegate, add the following code:

o

public partial class MainWindow : Window

{

private delegate void ProgressBarDelegate(System.Windows.DependencyProperty
dp, Object value);

public MainWindow()
{

InitializeComponent();

15. In the buttonl_Click method, add the following code:

o

private void buttonl_Click(object sender, RoutedEventArgs e)
{

double progress = 0;

ProgressBarDelegate updatePbDelegate =
new ProgressBarDelegate(progressBarl.SetValue);

do

2 of 10 02.09.2016 13:41

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

{

progress ++;

Dispatcher.Invoke(updatePbDelegate,
System.Windows.Threading.DispatcherPriority.Background,
new object[] { ProgressBar.ValueProperty, progress });

progressBarl.Value = progress;

}
while (progressBarl.Value != progressBarl.Maximum);

checkBox1l.IsEnabled = true;

16. Save the file.

Verify the WPF Application Runs Correctly

1. On the DEBUG menu, select Start Debugging or press F5.
2. Notice that the check box control is disabled. Choose Start.

In a few seconds, the progress bar should be 100% complete.
3. You can now select the check box control.

4. Close SimpleWPFApp.

Create and Run a Coded UI Test for SimpleWPFApp

1. Locate the SimpleWPFApp application that you created earlier. By default, the application will be located at C:\Users
\<username>\Documents\Visual Studio <version>\Projects\SimpleWPFApp\SimpleWPFApp\bin\Debug
\SimpleWPFApp.exe

2. Create a desktop shortcut to the SimpleWPFApp application. Right-click SimpleWPFApp.exe and choose Copy. On
your desktop, right-click and choose Paste shortcut.

? Tip

A shortcut to the application makes it easier to add or modify Coded Ul tests for your application because it lets
you start the application quickly.

3. In Solution Explorer, right-click the solution, choose Add and then select New Project.

The Add New Project dialog box appears.

4.In the Installed pane, expand Visual C#, and then select Test.

3 of 10 02.09.2016 13:41

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

4 of 10

5.1n the middle pane, select the Coded UI Test Project template.
6. Choose OK.
In Solution Explorer, the new coded Ul test project named CodedUITestProjectl is added to your solution.
The Generate Code for Coded UI Test dialog box appears.
7. Select the Record actions, edit Ul map or add assertions option and choose OK.
The UIMap — Coded UI Test Builder appears, and the Visual Studio window is minimized.
For more information about the options in the dialog box, see Creating Coded UI Tests.
8. Choose Start Recording on the UIMap — Coded Ul Test Builder.
UlMap - Coded Ul Test Builder ? X
o © =
You can pause the recording if needed, for example if you have to deal with incoming mail.

UlMap - Coded Ul Test Builder ? X

@- - -

& Warning

All actions performed on the desktop will be recorded. Pause the recording if you are performing actions that may
lead to sensitive data being included in the recording.
9. Launch the SimpleWPFApp using the desktop shortcut.
As before, notice that the check box control is disabled.
10. On the SimpleWPFApp, choose Start.
In a few seconds, the progress bar should be 100% complete.
11. Check the check box control which is now enabled.
12. Close the SimpleWPFApp application.
13. On the UIMap - Coded UI Test Builder, choose Generate Code.

14.In the Method Name type SimpleAppTest and choose Add and Generate. In a few seconds, the Coded UI test
appears and is added to the Solution.

15. Close the UIMap — Coded UI Test Builder.
The CodedUITest1.cs file appears in the Code Editor.

16. Save your project.

02.09.2016 13:41

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

Run the Coded UI Test

1. From the TEST menu, choose Windows and then choose Test Explorer.

2. From the BUILD menu, choose Build Solution.

3.In the CodedUITest1.cs file, locate the CodedUITestMethod method, right-click and select Run Tests, or run the test
from Test Explorer.

While the coded Ul test runs, the SimpleWPFApp is visible. It conducts the steps that you did in the previous
procedure. However, when the test tries to select the check box for the check box control, the Test Results window
shows that the test failed. This is because the test tries to select the check box but is not aware that the check box
control is disabled until the progress bar is 100% complete. You can correct this and similar issues by using the
various UITestControl.WaitForControlXXX() methods that are available for coded UI testing. The next
procedure will demonstrate using the WaitForControlEnabled() method to correct the issue that caused this test

to fail. For more information, see Making Coded UI Tests Wait For Specific Events During Playback.

Edit and Rerun the Coded UI Test

1.In the Test Explorer window, select the failed test and in the StackTrace section, choose the first link to
UIMap.SimpleAppTest().

2. The UIMap.Designer.cs file opens with the point of error highlighted in the code:

C#

// Select 'CheckBox' check box
uICheckBoxCheckBox.Checked = this.SimpleAppTestParams.UICheckBoxCheckBoxChecked;

3. To correct this problem, you can make the coded UI test wait for the CheckBox control to be enabled before
continuing on to this line using the WaitForControlEnabled() method.

& Warning

Do not modify the UIMap.Designer.cs file. Any code changes you make in the UIMapDesigner.cs file will be
overwritten every time you generate code using the UIMap - Coded UI Test Builder. If you have to modify a
recorded method, you must copy it to UIMap.cs file and rename it. The UIMap.cs file can be used to override
methods and properties in the UIMapDesigner.cs file. You must remove the reference to the original method in the
Coded UlTest.cs file and replace it with the renamed method name.

4.1In Solution Explorer, locate UIMap.uitest in your coded Ul test project.
5. Open the shortcut menu for UIMap.uitest and choose Open.

The coded Ul test is displayed in the Coded UI Test Editor. You can now view and edit the coded Ul test.

5of 10 02.09.2016 13:41

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

6. In the UI Action pane, select the test method (SimpleAppTest) that you want to move to the UIMap.cs or UIMap.vb
file to facilitate custom code functionality which won’t be overwritten when the test code is recompiled.

7. Choose the Move Code button on the Coded UI Test Editor toolbar.

8. A Microsoft Visual Studio dialog box is displayed. It warns you that the method will be moved from the UIMap.uitest
file to the UIMap.cs file and that you will no longer be able to edit the method using the Coded UI Test Editor.

Choose Yes.

The test method is removed from the UIMap.uitest file and no longer is displayed in the UI Actions pane. To edit the
moved test file, open the UIMap.cs file from Solution Explorer.

9. On the Visual Studio toolbar, choose Save.

The updates to the test method are saved in the UIMap.Designer file.

/1. Caution

Once you have moved the method, you can no longer edit it using the Coded UI Test Editor. You must add your
custom code and maintain it using the Code Editor.

10. Rename the method from SimpleAppTest() to ModifiedSimpleAppTest()
11. Add the following using statement to the file:

C#

using Microsoft.VisualStudio.TestTools.UITesting.WpfControls;

12. Add the following WaitForControlEnabled() method before the offending line of code identified previously:

C#

uICheckBoxCheckBox.WaitForControlEnabled();

// Select 'CheckBox' check box
uICheckBoxCheckBox.Checked = this.SimpleAppTestParams.UICheckBoxCheckBoxChecked;

13.In the CodedUITest1.cs file, locate the CodedUITestMethod method and either comment out or rename the
reference to the original SimpleAppTest() method and then replace it with the new ModifiedSimpleAppTest():

C#

[TestMethod]
public void CodedUITestMethod1()
{

6 of 10 02.09.2016 13:41

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

// To generate code for this test, select "Generate Code for Coded UI
Test" from the shortcut menu and select one of the menu items.

// For more information on generated code, see http://go.microsoft.com
/fwlink/?LinkId=179463

//this.UIMap.SimpleAppTest();

this.UIMap.ModifiedSimpleAppTest();

14. On the BUILD menu, choose Build Solution.
15. Right-click the CodedUITestMethod method and select Run Tests.

16. This time the coded Ul test successfully completes all the steps in the test and Passed is displayed in the Test Explorer
window.

Refactor a Control in the SimpleWPFApp

1. In the MainWindow.xaml file, in the Designer, select the button control.

2. At the top of the Properties window, change the Name property value from buttonl to buttonA.
3. On the BUILD menu, choose Build Solution.

4.In Test Explorer, run CodedUITestMethod1.

The test fails because the coded Ul test cannot locate the button control that was originally mapped in the UIMap as
buttonl. Refactoring can impact coded Ul tests in this manner.

5.1In the Test Explorer window, in the StackTrace section, choose the first link next to
UIMpa.ModifiedSimpleAppTest().

The UIMap.cs file opens. The point of error is highlighted in the code:

C#

// Click 'Start' button
Mouse.Click(uIStartButton, new Point(27, 10));

Notice that the line of code earlier in this procedure is using UiStartButton, which is the UIMap name before it was
refactored.

To correct the issue, you can add the refactored control to the UIMap by using the Coded UI Test Builder. You can
update the test’s code to use the code, as demonstrated in the next procedure.

Map Refactored Control and Edit and Rerun the Coded UI Test

1. In the CodedUITest1.cs file, in the CodedUITestMethod1() method, right-click, select Generate Code for Coded Ul

7 of 10 02.09.2016 13:41

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test

8 of 10

Test and then choose Use Coded UI Test Builder.

The UlIMap — Coded UI Test Builder appears.
2. Using the desktop shortcut you created earlier, run the SimpleWPFApp application that you created earlier.
3. On the UIMap — Coded UI Test Builder, drag the crosshair tool to the Start button on the SimpleWPFApp.

The Start button is enclosed in a blue box and the Coded UI Test Builder takes a few seconds to process the data for
the selected control and displays the controls properties. Notice that the AutomationUId is named buttonA.

4. In the properties for the control, choose the arrow at the upper-left corner to expand the UI Control Map. Notice that
UIStartButtonl is selected.

5.1n the toolbar, choose the Add control to UI Control Map.

The status at the bottom of the window verifies the action by displaying Selected control has been added to the
UI control map.

6. On the UIMap — Coded UI Test Builder, choose Generate Code.

The Coded UI Test Builder — Generate Code appears with a note indicating that no new method is required and that
code will only be generated for the changes to the UI control map.

7. Choose Generate.
8. Close SimpleWPFApp.exe.
9. Close UIMap — Coded UI Test Builder.
The UIMap — Coded UI Test Builder takes a few seconds to process the UI control map changes.
10. In Solution Explorer, open the UIMap.Designer.cs file.

11. In the UIMap.Designer.cs file, locate the UIStartButtonl property. Notice the SearchProperties is set to "buttonA™:

C#

public WpfButton UIStartButtonl
{
get
{
if ((this.mUIStartButtonl == null))

{
this.mUIStartButtonl = new WpfButton(this);

#region Search Criteria

this.mUIStartButtonl.SearchProperties[WpfButton.PropertyNames.AutomationId] =
"buttonA";
this.mUIStartButtonl.WindowTitles.Add("MainWindow");
#endregion

}
return this.mUIStartButtonil;

02.09.2016 13:41

https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

Now you can modify the coded Ul test to use the newly mapped control. As pointed out in the previous procedure if
you want to override any methods or properties in the coded Ul test, you must do so in the UIMap.cs file.

12.In the UIMap.cs file, add a constructor and specify the SearchProperties property of the UIStartButton property
to use the AutomationID property with a value of "buttonA":

o

public UIMap()
{

this.UIMainWindowWindow.UIStartButton.SearchProperties[WpfButton.PropertyNames.Automat
= "buttonA";
}

13. On the BUILD menu, choose Build Solution.

14.1n Test Explorer, run CodedUITestMethod1.

This time, the coded UI test successfully completes all the steps in the test. In the Test Results Window, you will see a
status of Passed.

External Resources

Videos
o Coded UI Tests-DeepDive-Episodel-GettingStarted

o Coded UI Tests-DeepDive-Episode2-MaintainenceAndDebugging

o Coded UI Tests-DeepDive-Episode3-HandCoding

Hands on lab
MSDN Virtual Lab: Introduction to Creating Coded UI Tests with Visual Studio 2010

FAQ

9 of 10 02.09.2016 13:41

Wal kthrough: Creating, Editing and Maintaining a Coded Ul Test https://msdn.mi crosoft.conVen-ug/library/ff977233(d=printer).aspx

Coded Ul Tests FAQ - 1

Coded UI Tests FAQ -2

Forum
Visual Studio UI Automation Testing (includes CodedUI)

See Also

Use UI Automation To Test Your Code

Getting Started with the WPF Designer

Supported Configurations and Platforms for Coded UI Tests and Action Recordings
Editing Coded UI Tests Using the Coded UI Test Editor

© 2016 Microsoft

10 of 10 02.09.2016 13:41

Test Windows Phone 8.1 Apps with Coded Ul Tests

Test Windows Phone 8.1 Apps with Coded Ul

Tests

Visual Studio 2015

Use coded Ul tests to test your Windows Phone apps.

https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

Create a simple Windows Phone app

1. Create a new project for a blank Windows Phone app using either Visual C# or Visual Basic template.

I Recent
4 Installed

4 Templates
[Visual Basic

4 Visual C#

4 Store Apps
Universal Apps
Windows Apps
Windows Phone Apps

Windows Desktop

I Web

I Office/SharePoint

Cloud

Reporting

Silverlight

Test

WCF

Workflow
[Visual C++

2.1In Solution Explorer, open MainPage.xaml. From the Toolbox, drag a button control and a textbox control to the

design surface.

1of 20

MET Framework 4.5 -

Sortby: Default

Blank App (Windows Phone)

Hub App (Windows Phone)

Pivot App (Windows Phone)

WebViewApp (Windows Phone)

Class Library (Windows Phone)

Windows Runtime Component {Windows Phone)

Unit Test App (Windows Phone)

Coded Ul Test Project (Windows Phone)

Blank App (Windows Phone Silverlight)

Databound App (Windows Phone Silverlight)

Visual C#

Visual CF

Visual CF

Visual C#

Visual C#

Visual CF

Visual CF

Visual C#

Visual C#

Visual CF

02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.com/en-us/library/dn747198(d=printer).aspx

| R T R =] N o R
b App! - Microsoft Visual Studio

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM DESIGN FORMAT TOOLS TEST ARCHIT..

o - gl - B Emulator 81 WYGA4inch512MB - () - Debug
E Toolbox e dll MainPagexaml* f 3 Bl EED R
E search Toolbox ye
& P Advertising :
i_' 4 Common XAML Controfs
i % Fointer
- H Border
7 G Button
5 CheckBox

= ComboBox
DatePidker
L =& TextBox
[Fyout
D Grid

‘-';55 GridView
Hub

@ Image

3. In the Properties window, name the button control.

MzinPage.xaml* + X Appxamlcs

.. 12:38.....

Mame button

g

Type button
Search Properties
Arrange by: Category -
[+ Brush

[» Appearance

TEKTBOK 4 Common

CickMode Release
Content Button
ContentTransi.. (Collection)

ToolTipServic...

DataContext |

[+ Layout

4. Name the textbox control.

2 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests

hMainPage.xaml* + ¥ Appxamlcs

e T

L] L]
-~ .
L Ll i
L] -

https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

- 12:38
Mame textBox

Type TextBox
Search Properties
Arrange by: Category -
[+ Brush
[+ Appearance
4 Common
Text TextBox
AcceptsReturn]
Inputscope
[sReadOnly]
PlaceholderText
Tool TipServic..

DataContext

5. On designer surface, double-click the button control and add the following code:

VB

Public NotInheritable Class MainPage

Inherits Page

Private Sub button_Click(sender As Object, e As RoutedEventArgs) Handles

Button.Click

Me.textBox.Text = Me.button.Name

End Sub
End Class

6. Press F5 to run your Windows Phone app in the emulator and verify that it's working.

3 of 20

02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

O9|€ x| x

=
(]

O

r
&

100 000

2 W

Y

7. Exit the emulator.

Deploy the Windows Phone app

1. Before a coded Ul test can map an app’s controls, you have to deploy the app.

4 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

Solution Explorer

: ® o-enaBl s

%+ | Search Solution Ex plorer {Cirl+) o~
fa] Solution ‘Appl’ (2 projects)
]
I::I Build Properties
) References
Rebuild
Assets

Deploy App.xami

Clean MainPage.xaml

View Package.apprxmanifest

Analyze

Scope to This
Mew Solution Explorer View

ﬁ Show on Code Map

The emulator starts. The app is now available for testing.

L X

®

O9|€ 7|

S
(|

O

r
L

'@ Alarms

SUIR)

Appl

v

mmi)| Battery Saver

Keep the emulator running while you create your coded UI test.

5 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests

https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

Create a coded UI test for the Windows Phone app

1. Add a new coded Ul test project to the solution with the Windows Phone app.

I+ Recent

4 Installed
4 Templates
I Visual Basic
4 Vfisual CF
4 Store Apps
Universal Apps
Windows Apps
Windows Phone Apps
Windows Desktop
b wWeb
I Office/SharePoint
Cloud
Reporting
Silverlight
Test
WCF
Workflow

I Online

MET Framework 4.5 ~ Sortby: Default
re -
J Blank App (Windows Phone) Visual C#
-
s
J Hub App (Windows Phone) Visual C#F
c#
_r Pivot App (Windows Phone) Visual C#
abc
c#
r;l WebViewApp (Windows Phone) Visual C#
&
C#
El:i! Class Library (Windows Phone) Visual C#F
=

c#
Elti! Windows Runtime Component (Windows Phone) Visual C#
-

e
EJ Uniit Test App (Windows Phone) Visual C#

C#
LJ Blank App (Windows Phone Silverlight) Visual C#F

Click here t i i it

2. Choose to edit the UI map using the cross-hair tool.

6 of 20

02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

namespace Coded UlTestProject]
{

'f{ <summaryz

Generate Code for Coded Ul Test ?

How do you want to create your coded Ul test?

The code file for the coded Ul test has been added to your test project. To
proceed, you can select from the opbions below.

(@) Edit Ul Map or add assertions

Use the cross-hair tool to add controls to UIMap and generate code.
Mote: Coded Ul Test Builder will connect to an emulator instancee running on

this machine. Before proceeding, ensure that an emulator is running and the
app to be tested is deployed.

(| Manually edit the test
Write code for the test manually, without using the cross-hair tool.

. oK

3. Use the cross-hair tool to select the app, then copy the value for the app’s Automationld property, which will be
used later to start the app in the test.

7 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

e
S

?

Wiy Battery Saver

| Add Assertions: UlAppiListitem - Coded U Tes... X

« 5 Add Assertion (] *'% Wl
| {s} Property Value
B Calculator s

ControlType Listitem

Ca I e n d a r o Tech = Add Assertion Alt+a,
E 4 Generi
]
E Clas -
] 3 |:'|—.| Copy Value to Clipboard Chr+C
ot Famy
2 HasFoous False
Exists True
Enabled True

Mame Appl

UiMap - Coded Ul Test P{':ﬂEl T X
@ =
Using Emulator 8.1 WVGA 4 inch 512MB

4.1In the emulator, start the app and use the cross-hair tool to select the button control. Then add the button control
to the UI control map.

8 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

9 of 20

Add Assertions: UlButtonButton - Coded Ul Test Builder _

ol X x| @ ¥» /B Add Assertion 0 = Wl
4 UlAppiWindow {3} Property Value
UlButtonButhon TR
ControlType Bution
Automationld button

TechnologyMame (W]F=Y
4 Control Specific
Font
Acceleratorkey
Accesskey
LabeledBy
lem5status
HelpText
DisplayText Bution

UiMap - Coded Ul Test Fytder ? X
o|=
Using Emulator 8.1 WWGA 4 inch 5T2MB

5. To add the textbox control to the UI control map, repeat the previous step.

02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

X

]
bl
0
Q

i 2:48

P |
I.D.I

SUIR

Add Asserfions: UlTextBoxEdit- Coded Ul Test Builder ? oM
= ?
X | » & AddAsserion | @ €0 | [T
4 . UlAppIWindow L Property i
UlButtonBution 4 Search
UITextBoxEdit ContmolType Edit
Automationld textBox

TechnologyMame UiA

6. Generate code to create code for changes to the UI control map.

Generated Code - Coded Ul Test Builder ? X

Method Mame:
{for example: MyMethod)

ﬂ There is no new method required, Code will only be generated
for the changes to the Ul control map.

Generate

UlMap - Coded Ul Test Builder 7
@ =
Using Emulator 8.1 WVGA 4 inch 512MB

7. Use the cross-hair tool to select the textbox control, and then select the Text property.

10 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

Add Assertions: UlTextBoxEdit- Coded Ul Test Builder ?
X I: » 5 Add Assertion D « W
4 UlAppIWindow £ Property Value
UlButionBution Accesskey
UlTextBoxEdit LabeledBy
emSatus

HeipText

SelectionText

IsPassword False
ReadOnly False

4 Generic
Oasskame TextBox
FriendlyMame textBox
HasFocus False

8. Add an assertion. It will be used in the test to verify that the value is correct.

11 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

_Add Assertions: UlTextBoxEdit - Coded Ul Test Builder

»

4 UlApplWindow L Property Value

hutioobision Add Assertion for: Text ? x
UiTextBoxEdit
l Comparator: [
Arebqual ¥

Comparison Value:

button

Message on Assertion Failure:

E oK | ;| Cancel
UlMap - Coded U Test Builder ? X
® =

Using Emulator 8.1 WWGA 4 inch 512MB

9. Add and generate code for the assert method.

Generated Code - Coded Ul Test Builder

Method Mame:
{for exarnple: MyMethod)

AssertMethod] -

Method Description:

Validate that the value for the textbox is correct.

Add and Generate
UlMap - Coded Ul Test Builder ? oM
@ =

Using Emulator 8.1 WVGA 4 inch 512MB
10. Visual C#

In Solution Explorer, open the UIMap.Designer.cs file to view the code you just added for the assert method and
the controls.

Visual Basic

In Solution Explorer, open the CodedUITest1.vb file. In the CodedUITestMethod1() test method code, right-click

12 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

the call to the assertion method that was automatically added Me.UIMap.AssertMethodl() and choose Go To
Definition. This will open the UIMap.Designer.vb file in the code editor so you can view the code you added for
the assert method and the controls.

& Warning

Do not modify the UIMap.designer.cs or UIMap.Designer.vb file directly. If you do this, the changes to the file
will be overwritten each time the test is generated.

Assert method
VB

Public Sub AssertMethodl()
Dim uITextBoxEdit As XamlEdit = Me.UIApplWindow.UITextBoxEdit

'Verify that the 'Text' property of 'textBox' text box equals 'button'
Assert.AreEqual(Me.AssertMethodlExpectedValues.UITextBoxEditText,
ulTextBoxEdit.Text)
End Sub

Controls
VB

#Region "Properties"
Public ReadOnly Property UIButtonButton() As XamlButton
Get
If (Me.mUIButtonButton Is Nothing) Then
Me.mUIButtonButton = New XamlButton(Me)

Me.mUIButtonButton.SearchProperties(XamlButton.PropertyNames.AutomationId) =
"button”
End If
Return Me.mUIButtonButton
End Get
End Property

Public ReadOnly Property UITextBoxEdit() As XamlEdit
Get
If (Me.mUITextBoxEdit Is Nothing) Then
Me.mUITextBoxEdit = New XamlEdit(Me)

Me.mUITextBoxEdit.SearchProperties(XamlEdit.PropertyNames.AutomationId) = "textBox"
End If
Return Me.mUITextBoxEdit
End Get
End Property
#End Region

13 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

#Region "Fields"
Private mUIButtonButton As XamlButton

Private mUITextBoxEdit As XamlEdit
#End Region

11.In Solution Explorer, open the CodedUITest1.cs or CodedUITest1.vb file. You can now add code to the
CodedUTTestMethod1 method for the actions needed to run the test. Use the controls that were added to the
UIMap to add code:

a. Launch the Windows Phone app using the automation ID property you copied to the clipboard previously:

e

XamlWindow.Launch("ed85f6ff-2fdl-4ec5-9eef-696026c3fa7b_cyrgexqw8cc7c!App");

b. Add a gesture to tap the button control:

VB

Gesture.Tap(Me.UIMap.UIApplWindow.UIButtonButton)

c. Verify that the call to the assert method that was automatically generated comes after launching the app
and tap gesture on the button:

e

Me.UIMap.AssertMethodl()

After the code is added, the CodedUITestMethod1 test method should appear as follows:

e

<CodedUITest>
Public Class CodedUITestl

<TestMethod()>

Public Sub CodedUITestMethodl()
' To generate code for this test, select "Generate Code for Coded UI Test"

from the shortcut menu and select one of the menu items.

Launch the app.
XamlWindow.Launch("ed85f6ff-2fdl-4ec5-9eef-696026c3fa7b_cyrqgexqw8cc7c!App™)

'// Tap the button.
Gesture.Tap(Me.UIMap.UIApplWindow.UIButtonButton)

Me.UIMap.AssertMethodl()
End Sub

14 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

Run the coded UI test

1. Build your test and then run the test using the test explorer.

Dd Appl - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE

Q - - M P Emulator 81 WVGA4inch512MB - (U - Debug
UlMap.Designercs & X CodedUlTestcs MainPage.xami.c..
e [tz -~ seamh] CodedUITestProject!
IO Streaming Video: Improving quality wit. = Lreference | § 0/1 passing

Run All | Run.. F| Playlist: Al Tests - = public void AssertMethodl()
4 Not Run Tests (1) = #region Variable Declarations
A R e XamlEdit uITextBoxEdit = this.UILAppl...

-1 CodedUITestMethodl sendrepion

/! Verify that the “Text' property...
Assert.AreEqual(this.AssertMethodlE...

}

= #region Properties
1 reference
= public wirtual AssertMethodlExpectedValu...
{
= get
{

if ((this.mAssertMethodlExpecte...

{
}

this.mAssertMethodlExpected...

The Windows Phone app launches, the action to tap the button is completed, and the textbox's Text property is
populated and validated using the assert method.

After the test is finished, the test explorer confirms that the test passed.

15 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

D'd Appl - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE

B - -2 - | Emulator 81 WVGA 4inch512MB - (O - Debug .
Test Explorer SRR SRR S h el UlMap.Designencs B X CodedUlTestcs MainPage.xami.c..
O [z - search £ - [E] CodedUiTestProject1
K </summary >
[+ | Streaming Video: Improving qualiby wit. = 1 reference | 1/1 passing
bli id A tMethodl

Run All | Run.. +| Piaylist: All Tests = e ?“ T 0d1()

4 Passed Tests (1) = #region Variable Declarations
T — 951 ms XamlEdit uITextBoxEdit = this.UIAppl...
ot ' #endregion

I
/! Verify that the “Text’ property...
CodedUITestMethodi Assert.AreEqual(this.AssertMethodlE...
Source: CodedU|Testl.cs fine 23 t
) Test Passed - CodedUITestMethod1 B #region Properties
1 reference
EiaEe el el 2 e = public virtual AssertMethodlExpectedValu...
{
El get
{
if ((this.mAssertMethodlExpecte...
{
this.mAssertMethodlExpected...
}

Use Data-driven coded UI tests on Windows Phone apps

To test different conditions, a coded Ul test can be run multiple times with different sets of data.

Data-driven Coded Ul tests for Windows Phone are defined using the DataRow attribute on a test method. In the
following example, x and y use the values of 1 and 2 for the first iteration and -1 and -2 for the second iteration of the
test.

[DataRow(1l, 2, DisplayName = "Add positive numbers")]
[DataRow(-1, -2, DisplayName = "Add negative numbers")]
[TestMethod]

public void DataDrivingDemo_MyTestMethod(int x, int y)

Q&A

Q: Do I have to deploy the Windows Phone app in the emulator in order to map UI controls?

16 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

A: Yes, the coded Ul test builder requires that an emulator be running and the app be deployed to it. Otherwise, it will
throw an error message saying that no running emulator could be found.

Q: Can tests be executed on the emulator only, or can I also use a physical device?

A: Either option is supported. The target for test execution is selected by changing the emulator type or selecting
device in the device toolbar. If Device is selected, a Phone Blue device needs to be connected to one of the machine's
USB ports.

Dﬂ Appl - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW

im-2 e [> Emulator 81 WVGA 4inch 512 MB ~ | & - | Debug

Test Explorer - 03 P Emulater 8.1 WVGA 4 inch 512MB MainPage.xaml.cs

O [iE - search Jo I Device

< Emulator 8.1 WVGA 4 inch 512MB

Tools.UITesting

Emulator 8.1 WYGA 4 inch Platform.UnitT...

Rum All | Run... =| Playlist: All Tests = i Tools.UITest.I...
Emulator 8.1 WXGA 4.5 inch Toole k. B

e N.Dt Run Tests (1) Emulator 8.1 T20P 4.7 inch Tools.UITesting...
¢} CodedUlTestMethodl

I Streaming Video: Improving guality wit.., =

Emulator 8.1 1080P 5.5 inch
Emulator 8.1 1080P & inch

B <TestMethod()>
0 references

Public Sub CodedUITestMethodl()

Q: Why don’t I see the option to record my coded UI test in the Generate Code for a Coded UI
Test dialog?

A: The option to record is not supported for Windows Phone apps.

Q: Can I create a coded UI test for my Windows Phone apps based on WinJS, Silverlight or
HTML5?

A: No, only XAML based apps are supported.

Q: Can I create coded Ul tests for my Windows Phone apps on a system that is not running
Windows 8.1 or Windows 10?

A: No, the Coded Ul Test Project templates are only available on Windows 8.1 and Windows 10. To create automation
for Universal Windows Platform (UWP) apps, you'll need Windows 10.

Q: How do I create coded UI tests for Universal Windows Platform (UWP) apps?

A: Depending on the platform where you're testing your UWP app, create coded Ul test project in one of these ways:

® A UWP app running on local machine will run as a Store app. To test this, you must use the Coded UI Test

17 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

Project (Windows) template. To find this template when you create a new project, go to the Windows,
Universal node. Or go to the Windows, Windows 8, Windows node.

® A UWP app running on mobile device or emulator will run as a Phone app. To test this, you must use the Coded
UI Test Project (Windows Phone) template. To find this template when you create a new project, go to the
Windows, Universal node. Or go to the Windows, Windows 8, Windows Phone node.

After you create the project, authoring a test stays the same as before.

Q: Can I select controls that are outside the emulator?
A: No, the builder will not detect them.

Q: Can I use the coded UI test builder to map controls using a physical phone device?

A: No, The builder can only map Ul elements if your app has been deployed to the emulator.

Q: Why can’t I modify the code in the UIMap.Designer file?

A: Any code changes you make in the UIMapDesigner.cs file will be overwritten every time you generate code using the
UIMap - Coded UI Test Builder. If you have to modify a recorded method, you must copy it to UIMap.cs file and
rename it. The UIMap.cs file can be used to override methods and properties in the UIMapDesigner.cs file. You must
remove the reference to the original method in the Coded UlTest.cs file and replace it with the renamed method name.

Q: Can I run a coded UI test on my Windows Phone app from the command-line?

A: Yes, you use a runsettings file to specify the target device for test execution. For example:
vstest.console.exe “pathToYourCodedUITestDIl” /settings:devicetarget.runsettings

Sample runsettings file:

<?xml version="1.0" encoding="utf-8"?>

<RunSettings>

<MSPhoneTest>

<l--to specify test execution on device, use a TargetDevice option as follows-->
<TargetDevice>Device</TargetDevice>

<l--to specify an emulator instead, use a TargetDevice option like below-->
<!--<TargetDevice>Emulator 8.1 WVGA 4 inch 512MB</TargetDevice>-->
</MSPhoneTest>

</RunSettings>

Q: What are the differences between coded Ul tests for XAML-based Windows Store apps and
Windows Phone apps?

A: These are some of the key differences:

18 of 20 02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests

Feature

Target for
running tests

Execute from
the
command-line

Specialized
classes for
Shell Controls

WebView
control in a
XAML app

Execute
automated
tests from
MTM

Data-driven
tests

Windows Store apps

Local or remote computer. Remote computers can be specified when you use
an automated test case to run tests. See Automate a test case in Microsoft Test
Manager.

Settings file not required to specify target.

T:Microsoft.VisualStudio.TestTools.UITesting.DirectUIControls.DirectUIControl

Supported if you use Html* specialized classes to interact with HTML elements.

See Microsoft.VisualStudio.TestTools.UITesting.HtmlControls.

Supported.

See Data-driven tests for information about using external data-sources and
using DataSource attribute on a test method.

https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

Windows
Phone apps

Emulator or
device. See, Q:
Can tests be
executed on the
emulator only,
or canlalso use
a physical
device? in this
topic.

Runsettings file
required to
specify target.

UlTestControl

Not supported.

Not supported.

Data is
specified inline,
using DataRow
attribute on a
test method.
See Use
Data-driven
coded Ul tests
on Windows
Phone appsin
this topic.

For information about coded UI tests for Windows Store apps, see Test Windows Store 8.1 Apps with Coded UI Tests.

External resources

02.09.2016 13:42

Test Windows Phone 8.1 Apps with Coded Ul Tests https://msdn.mi crosoft.comyen-ug/library/dn747198(d=printer).aspx

Microsoft Visual Studio Application Lifecycle Management blog: Using Coded UI to test XAML-based Windows Phone
apps

See Also

Use UI Automation To Test Your Code

© 2016 Microsoft

20 of 20 02.09.2016 13:42

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

1of 13

Creating a Data-Driven Coded UI Test

Visual Studio 2015

To test different conditions, you can run your tests multiple times with different parameter values. Data-driven coded Ul
tests are a convenient way to do this. You define parameter values in a data source, and each row in the data source is an
iteration of the coded Ul test. The overall result of the test will be based on the outcome for all the iterations. For example, if
one test iteration fails, the overall test result is failure.

Requirements

® Visual Studio Enterprise

Create a data-driven coded UI test

This sample creates a coded Ul test that runs on the Windows Calculator application. It adds two numbers together and
uses an assertion to validate that the sum is correct. Next, the assertion and the parameter values for the two numbers are
coded to become data-driven and stored in a comma-separated value (.csv) file.

Step 1 - Create a coded UI test

1. Create a project.

03.09.2016 15:49

Creating a Data-Driven Coded Ul Test

https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

4 Templates
P Visual Basic
4 Visual C#
P Store Apps
Windows Desktop
P Web
b Office/SharePoint
Cloud
LightSwitch
Reporting

NET Framework 4.5 ~ Sortby: Default v

. ﬁcj Coded Ul Test Project Visual C#
ricj Unit Test Project Visual C#

Cc#
E_’I Web Performance and Load T.. Visual C#

Name: | dataDrivensample | |

Location: \ c\users\hhill\documents\visual studio 2013\Projects

Solution: Create new solution

Solution name: ' dataDrivenSample

2. Choose to record the actions.

How do you want to create your coded Ul test?

o The code file for the coded Ul test has been added to your test project. To
generate code for this test, you can select from the options below.

'@ Record actions, edit Ul map or add assertions
Perform tasks in your application and generate code for your actions.

| Use an existing action recording

Generate code that performs the same actions as the action recording that
is assodated with the test case or shared steps.

3. Open the calculator app and start recording the test.

2 of 13

03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

] Calculator - ©

View Edit Help I
0

MCHMR‘MS’M-I- M-’

==

‘ 4 H 5 ‘ 6 || » || &
BB
- UIMap - Coded U Test Builder ? X
o | Jl+] =
‘ ® @ *=

4. Add 1 plus 2, pause the recorder, and generate the test method. Later we'll replace the values of this user input
with values from a data file.

R =
D Calculator Generate Code - Coded Ul Test Builder ? X
View Edit Help |
Method Name:
(for example: MyMethod)
3 AddNumbers v
MC H MR H MS ’ M+ ’ M- ’ vl
1+2=3
SR
BODEE
‘ 4 “ 5 6 = ’ 1 Add and Generate
B KX ER|
- UIMap - Coded Ul Test Builder ? X
0 L~ =
\ “ o [E

Close the test builder. The method is added to the test:

o

[TestMethod]
public void CodedUITestMethodl()
{

// To generate code for this test, select "Generate Code for Coded UI Test"
from the shortcut menu and select one of the menu items.
this.UIMap.AddNumbers();

3of 13 03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

5. Use the AddNumbers () method to verify that the test runs. Place the cursor in the test method shown above, open
the context menu, and choose Run Tests. (Keyboard shortcut: Ctrl + R, T).

The test result that shows if the test passed or failed is displayed in the Test Explorer window. To open the Test
Explorer window, from the TEST menu, choose Windows and then choose Test Explorer.

6. Because a data source can also be used for assertion parameter values—which are used by the test to verify
expected values—Ilet's add an assertion to validate that the sum of the two numbers is correct. Place the cursor in
the test method shown above, open the context menu and choose Generate Code for Coded UI Test, and then
Use Coded UI Test Builder.

Map the text control in the calculator that displays the sum.

Add Assertions: Ulitem2Text - Coded Ul Test Builder T
dIX &: @ » /5 Add Assertion ® ul
- - 4’ UlCalculatorwindow G Property Value
u Calculator = | UlitemWindow 4 Search
View Edit Help J UlitemWindow1 ControlType Text
: UliTemWindow2 TechnologyName MSAA
‘ 4 . Ulitem2Window Name Result
3 S UliTem2Text 4 Control Specific
NG HelpText
MC || MR ‘ MS ‘ M+ ‘ M- \ AccessKey
| | \ ControlName
&= B |nSa| 2 ‘ v o Controlld 0
. 8 5 | \ AccessibleDescription
‘ ‘ / ‘ | DisplayText 3
“)
4 || s \ 6 ‘ . ‘ 1/xi a S
BIERIERIE UIMap - Coded UI Test Builder ? X
o - [® ©|=

7. Add an assertion that validates that the value of the sum is correct. Choose the DisplayText property that has the
value of 3 and then choose Add Assertion. Use the AreEqual comparator and verify that the comparison value is
3.

4 of 13 03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

Add Assertion for: DisplayText ? x

Comparator:
AreEqual -

Comparison Value:
3

Message on Assertion Failure:

OK] I Cancel

8. After configuring the assertion, generate code from the builder again. This creates a new method for the validation.

— =
D Calculator Generate Code - Coded Ul Test Builder A
View Edit Help |
Method Name:
(for example: MyMethod)
3 ValidateSum v
MC || MR || s || e || w | Method Desenpron
= E3 | KR EN RN
o (B 2 o o
‘ . H s H . ’ . ’ = | Add and Generate
e
- UIMap - Coded Ul Test Builder ? X
Lo L L] o [=

Because the ValidateSum method validates the results of the AddNumbers method, move it to the bottom of the
code block.

o

public void CodedUITestMethod1()
{

// To generate code for this test, select "Generate Code for Coded UI Test"
from the shortcut menu and select one of the menu items.

this.UIMap.AddNumbers();

this.UIMap.ValidateSum();

5of 13 03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

9. Verify that the test runs by using the ValidateSum() method. Place the cursor in the test method shown above,
open the context menu, and choose Run Tests. (Keyboard shortcut:Ctrl + R, T).

At this point, all the parameter values are defined in their methods as constants. Next, let's create a data set to
make our test data-driven.

Step 2 - Create a data set

1. Add a text file to the dataDrivenSample project named data.csv.

Add New Iltem - dataDrivenSample M x|
4 Installed Sortby: Default v | & Search Installed... P~
4 \Visual C¥ ltems =
e Icon File Visual C# Items Type: Visual C# items
0 An empty text file
Data
%3 installer Class Visual C# Items
General ¥
Web
. _j Resources File Visual C# ltems
Windows Forms
WPF
. I% Runtime Text Template Visual C# ltems
Reporting
SQL Server
ﬁ Setting File Visual C# ltems
Test
Workflow
I% Text File Visual C# ltems
Online
I% Text Template Visual C# ltems .
Click here to go online and find templates.
Name: Y data.csv ‘

Cance

2. Populate the .csv file with the following data:

Numl Num2 Sum
3 4 7
5 6 11
6 8 14

After adding the data, the file should appear as the following:

6 of 13 03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

DC dataDrivenSample - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW

- B-2 W - - P Start- ()~ Debug - L b
Test Explorer v 0 x [EESTSA CodedUITestl.cs
S [z - Search P~ Numl, Num2, Sum
3,4,7
3 Streaming Videc: Improving quality wit... 5,6,11
6,8,14

Run All | Run.. | Playlist: All Tests ~

4 Passed Tests (1)
© CodedUITestMethod1 2 sec

Summary
Last Test Run Passed (Total...
® 1 Test Passed

3.1t is important to save the .csv file using the correct encoding. On the FILE menu, choose Advanced Save Options
and choose Unicode (UTF-8 without signature) — Codepage 65001 as the encoding.

4. The .csv file, must be copied to the output directory, or the test can't run. Use the Properties window to copy it.

Solution Explorer : v v lX
@ o-2udm &=
Search Solution Explorer (Ciri+)) P~

fa] Solution ‘dataDrivenSample’ (1 project)
dataDrivenSample
M Properties
=-B References
c# CodeUlTestl.cs
data.csv
ZF UMap.uitest

Solution Explorer Team Explorer Class View

Properties v 232X
data.csv File Properties -

-

Build Action Content

(o R e delTiVige (ol Copy if newer \l\

Custom Tool Do not copy
Custom Tool Namesp... Copy always

= i

File Name data.csv

7 of 13 03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx
Now that we have the data set created, let's bind the data to the test.

Step 3 - Add data source binding

1. To bind the data source, add a DataSource attribute within the existing [TestMethod] attribute that is
immediately above the test method.

[DataSource("Microsoft.VisualStudio.TestTools.DataSource.CSV",
" |DataDirectory|\\data.csv", "data#csv", DataAccessMethod.Sequential),

DeploymentItem("data.csv"), TestMethod]
public void CodedUITestMethodl1()

{

// To generate code for this test, select "Generate Code for Coded UI Test"
from the shortcut menu and select one of the menu items.

this.UIMap.AddNumbers();

this.UIMap.ValidateSum();

The data source is now available for you to use in this test method.

? Tip

See data source attribute samples in the Q & A section for samples of using other data source types such as
XML, SQL Express and Excel.

2. Run the test.

Notice that the test runs through three iterations. This is because the data source that was bound contains three
rows of data. However, you will also notice that the test is still using the constant parameter values and is adding 1
+ 2 with a sum of 3 each time.

Next, we'll configure the test to use the values in the data source file.

Step 4 — Use the data in the coded UI test

1. Add using Microsoft.VisualStudio.TestTools.UITesting.WinControls to the top of the CodedUITest.cs
file:

using System;
using System.Collections.Generic;
using System.Text.RegularExpressions;

8 of 13 03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

9of 13

using System.Windows.Input;

using System.Windows.Forms;

using System.Drawing;

using Microsoft.VisualStudio.TestTools.UITesting;

using Microsoft.VisualStudio.TestTools.UnitTesting;

using Microsoft.VisualStudio.TestTools.UITest.Extension;

using Keyboard = Microsoft.VisualStudio.TestTools.UITesting.Keyboard;
using Microsoft.VisualStudio.TestTools.UITesting.WinControls;

2. Add TestContext.DataRow[] in the CodedUITestMethod1() method which will apply values from the data
source. The data source values override the constants assigned to UIMap controls by using the controls
SearchProperties:

public void CodedUITestMethodl1()
{

// To generate code for this test, select "Generate Code for Coded UI Test"
from the shortcut menu and select one of the menu items.

this.UIMap.UICalculatorWindow.UIItemWindow.UIItem1Button.SearchProperties[WinButton.
= TestContext.DataRow["Numl"].ToString();

this.UIMap.UICalculatorWindow.UITtemWindow21.UIItem2Button.SearchProperties[WinButto
= TestContext.DataRow["Num2"].ToString();

this.UIMap.AddNumbers();

this.UIMap.ValidateSumExpectedValues.UIItem2TextDisplayText =
TestContext.DataRow["Sum"].ToString();

this.UIMap.ValidateSum();

To figure out which search properties to code the data to, use the Coded UI Test Editor.

O Open the UIMap.uitest file.

03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

Solution Explorer + 0 X

@ o-2ndd #=2
Search Solution Explorer (Ctrl+) P~
{41 Solution ‘dataDrivenSample’ (1 project)
] dataDrivenSample

M Properties
s-B References
c# CodeUlTestl.cs

data.csv
Z UMap.uitest
S Edit With Coded Ul Test Builder
© Open
Open With...
Scopre to This

New Solution Explorer View

ot &y

Solution Exp Show on Code Map
Exclude From Project
3{) Cut Ctri+X
E']j Copy Ctri+C
X Delete Del
¥:: Rename
J Properties Alt+Enter
O Choose the Ul action and observe the corresponding UI control mapping. Notice how the mapping

corresponds to the code, for example,
this.UIMap.UICalculatorWindow.UIItemWindow.UIIteml1Button.

Untapuies: + [,

PX! 8w O

Ul Actions Ul Control Map
4 §- AddNumbers 4 [JuMap
4 [T]UiCalculatorWindow
Click 'Add’ button 4 []UlitemWindow
Click 2" button > Q Ulitem1Button
Click "Equals” button b] UlitemWindow1
b ¥} validateSum b [UlitemWindow2

b [Ulitem2Window
P[] ulitemWindow21

O In the Properties Window, open Search Properties. The search properties Name value is what is being
manipulated in the code using the data source. For example, the SearchProperties is being assigned the
values in the first column of each data row:
UIItemlButton.SearchProperties[WinButton.PropertyNames.Name] =
TestContext.DataRow["Numl"].ToString();. For the three iterations, this test will change the Name
value for the search property to 3, then 5, and finally 6.

10 of 13 03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

UlMap.Designers.cs #m X + fafisEu v X

MicrosoftVisualStudio.TestTools.PowerTools.UlTestEditor... v
Ul Control Map E s | &
4 [OQuiMap =l Misc
4 [UlCalculatorWindow
Control Type Button
S eV Friendly Name 1 ™
C e ID Ulitem1 Button
b [JUittemWindow1 —[Search Configurations (Collection)
4 [uitemWindow?2 w3 Search Properties {Collection)
CV UlEqualsButton Technology Name MSAA
b] ultem2Window Windows Titles (Collection)
Edit Search Properties ?

The set of properties used to search for a Ul control.

Name Operator Value
ControlType EqualsTo Button
TechnologyName EqualsTo MSAA

N [

* Click to add a new item

ok || Conce

3. Save the solution.

Step 5 — Run the data-driven test

1. Verify that the test is now data-driven by running the test again.

You should see the test run through the three iterations using the values in the .csv file. The validation should work
as well and the test should display as passed in the Test Explorer.

Guidance

For additional information, see Testing for Continuous Delivery with Visual Studio 2012 — Chapter 2: Unit Testing: Testing
the Inside and Testing for Continuous Delivery with Visual Studio 2012 — Chapter 5: Automating System Tests

Q&A

What are the data source attributes for other data source types, such as SQL Express or XML?

You can use the sample data source strings in the table below by copying them to your code and making the necessary

11 of 13 03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

customizations.

Date S .
ate source Data Source Attribute

Type

Ccsv
[DataSource("Microsoft.VisualStudio.TestTools.DataSource.CSV",
"|DataDirectory|\\data.csv", "data#csv",
DataAccessMethod.Sequential), DeploymentItem("data.csv"), TestMethod]

Excel
DataSource("System.Data.Odbc", "Dsn=ExcelFiles;Driver={Microsoft
Excel Driver (*.xls)};dbg=|DataDirectory|\\Data.xls;defaultdir=.;
driverid=790;maxbuffersize=2048;pagetimeout=5;readonly=true”,
"Sheet1$", DataAccessMethod.Sequential),
DeploymentItem("Sheetl.x1ls"), TestMethod]

Test case in

Team

Foundation [DataSource("Microsoft.VisualStudio.TestTools.DataSource.TestCase",

Server "http://vlm13261329:8080/tfs/DefaultCollection;Agile"”, "30",
DataAccessMethod.Sequential), TestMethod]

XML
[DataSource("Microsoft.VisualStudio.TestTools.DataSource.XML",
"|DataDirectory|\\data.xml", "Iterations",
DataAccessMethod.Sequential), DeploymentItem("data.xml"), TestMethod]

SQL Express

[DataSource("System.Data.SqlClient", "Data Source=.\\sqglexpress;
Initial Catalog=tempdb;Integrated Security=True", "Data",
DataAccessMethod.Sequential), TestMethod]

Q: Can I use data-driven tests on my Windows Phone app?

A: Yes. Data-driven Coded Ul tests for Windows Phone are defined using the DataRow attribute on a test method. In

12 of 13 03.09.2016 15:49

Creating a Data-Driven Coded Ul Test https://msdn.mi crosoft.com/en-ug/li brary/ee624082(d=printer).aspx

the following example, x and y use the values of 1 and 2 for the first iteration and -1 and -2 for the second iteration of
the test.

[DataRow(1l, 2, DisplayName = "Add positive numbers™)]
[DataRow(-1, -2, DisplayName = "Add negative numbers")]
[TestMethod]

public void DataDrivingDemo_MyTestMethod(int x, int y)

For more information, see Use Data-driven coded Ul tests on Windows Phone apps.

Q: Why can’t I modify the code in the UIMap.Designer file?

A: Any code changes you make in the UIMapDesigner.cs file will be overwritten every time you generate code using the
UIMap - Coded UI Test Builder. In this sample, and in most cases, the code changes needed to enable a test to use a
data source can be made to the test's source code file (that is, CodedUITest1.cs).

If you have to modify a recorded method, you must copy it to UIMap.cs file and rename it. The UIMap.cs file can be
used to override methods and properties in the UIMapDesigner.cs file. You must remove the reference to the original
method in the Coded UlTest.cs file and replace it with the renamed method name.

See Also

T:Microsoft.VisualStudio.TestTools.UITest. Common.UIMap.UIMap

Assert

Use UI Automation To Test Your Code

Creating Coded UI Tests

Best Practices for Coded UI Tests

Supported Configurations and Platforms for Coded UI Tests and Action Recordings

© 2016 Microsoft

13 of 13 03.09.2016 15:49

o4 Visual Studio

Team Services > Test > Get started with developer testing tools ...

Table of contents
Testing scenarios
* Manual and exploratory testing
* Performance testing
* Continuous testing
¥ Developer testing tools
Overview
Get started
Create Unit Tests command
Generate tests with IntelliTest
Run tests with Test Explorer
Determine code coverage
System test with Visual Studio
Create system tests with VS
Run system tests with VS
Submit bugs in VS
Submit bugs in TFS

* IntelliTest reference manual

* Test lab management

API reference for test tools
Get started with developer testing tools
Last Updated: 8/4/2016

IN THIS ARTICLE +

Visual Studio 2015 | Previous version

Free Visual Studio @

«<* Share

Use Visual Studio to define and run your unit tests to maintain code health, ensure code coverage, and to find errors and faults before your

customers do.

Create unit tests
Create unit tests and run them frequently to make sure your code is working properly.

1. Create a unit test project.

Page 1 of 9

Site.css i X -
T = &
= @ o-2d #=2
FY
= | Search Solution Explorer (Ctrl+;)
[Build Solution Ctrl+Shift+B
Rebuild Selution

N
N

Assembled by RunPDF.com

https://www.visualstudio.com
javascript:void(0)
https://www.visualstudio.com/products/free-developer-offers-vs
https://www.visualstudio.com/docs/overview
https://www.visualstudio.com/docs/test/overview
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/overview
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/performance-testing/performance-testing
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/continuous-testing/continuous-testing
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/developer-testing/getting-started/getting-started-with-developer-testing
https://www.visualstudio.com/en-us/docs/test/developer-testing/getting-started/create-unit-tests-menu
https://msdn.microsoft.com/library/dn823749.aspx
https://msdn.microsoft.com/library/hh270865.aspx
https://msdn.microsoft.com/library/dd537628.aspx
https://msdn.microsoft.com/library/jj620889(v=vs.140).aspx
https://msdn.microsoft.com/library/jj620884(v=vs.140).aspx
https://msdn.microsoft.com/library/dd548714(v=vs.140).aspx
https://msdn.microsoft.com/library/dd293538(v=vs.140).aspx
https://msdn.microsoft.com/library/jj155803(v=vs.140).aspx
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-manual/introduction
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/en-us/docs/test/lab-management/test-machines/install-configure-test-agents
https://msdn.microsoft.com/library/dd465178(v=vs.140).aspx
javascript:void(0);
https://msdn.microsoft.com/library/hh694602%28v=vs.120%29.aspx
http://www.runpdf.com

Clean Solution

Run Code Analysis on Solution Alt+F11
Batch Build...
Configuration Manager...
i Manage NuGet Packages for Selution...
[Enable MuGet Package Restore
Mew Selution Explorer View
{ E% Show on Code Map
Calculate Code Metrics
Existing Project... £} Set StartUp Projects...
2. Name your project.
b Recent NET Framework45 | Sort by: Default
4 |nstalled (%3
" E_] Coded Ul Test Project Visual C# Type: V
b Visual Basic A projeg)
= c#
4 Visual C2 E Unit Test Project Visual C#
Windows Store
S C#
Windaws E_] Web Performance and Lead T...Visual C#
b Web
b Office/SharePoint
Cloud
LightSwitch
Reporting
Silverlight
Test
WCF
-
b Online Click here to go online and find templates.

MName: HelloWorldTests

The project is added to your solution.

Solution Explorer

@ o-ewdnm ,=|R
Search Selution Explorer (Ctrl+;) P~

fad Solution 'HelloWorld' (2 projects)
4 HelloWorld

b M Properties
b =B References
b c* UnitTestl.cs

Location: Ch\Users\JHartnett\Source\WorkspacesiFabrikamFiber\HelloWorld\,

3. In the unit test project, add a reference to the project you want to test.

Solution Explorer
@ o-2nd@m &=
Search Selution Explorer (Ctrl+;) P~

fad Solution 'HelloWorld' (2 projects)
s HelloWorld
4 T HelloWorldTests

I M Properties

p o c# Unit Add Reference...

Add Service Reference...
B Manage MuGet Packages...

Scope to This
MNew Solution Explorer View

Page 2 of 9

Y
N

Assembled by RunPDF.com

http://www.runpdf.com

4. Select the project that contains the code you'll test.

b Aszemblies

4 Projects

Solution

k COM

5. Code your unit test.

'IS HelloWorldTests. HomeControllerindexTests

Flusing System;

using System.Collections.Generic;

using System.Text;

using System.Web;

using System.Web.Mvc;

using HelloWorld;

using HelloWorld.Controllers;

| using Microsoft.VisualStudio.TestTools.UnitTesting;

Elnamespace HelloWorldTests

1
[TestClass]
0 references

= public class HomeControllerIndexTests

{
[TestMethod]
Orefarences
Bl public void HomeIndexTests()
{
[/ Arrange
HomeController controller = new HomeController();
[/l Act
ViewResult result = controller.Index(} as ViewResult;
/i Assert
Assert.AreEqual("Hello, World!™, result.ViewBag.Message);
L 3
3

You can also create unit test method stubs with the Create Unit Tests command. To learn how, see Create unit test method stubs with the Create

Unit Tests command.

Team Tools Architecture Test Analyze Window Help

Y1 &

Quick Launch (C

lebug = | Any CPU < b State| F_Gh s m| W OW W E
; Quick Actions... Ctrl=.
] Rename... F2 @ calculate{bool IsRented, Location location, wint Annualla - [+] m] }3 P - c‘
Organize Usings E Search Solution Explorer (Ctrl+;
R showon CodeMap 51 Solution Taxation' (5 proj
Find All References on Code Map e s 2 -
Show Related items on Code Map * Create Unit Tests
|
[Create Unit Tests)
Srnart Unit Tests Test Framework: :Mﬂu’: -
L/ .
& CudeR, T Test Project TarCalculatorsTests .
Debug Tests Curl+R, Crl+ T
11 Insert Snippet... Ctrlek, X MName Format for Test Project: | [Project]Tests
11 Sumound With... Ctrl+K. § Wi Ty
X Peek Definition Alt+F12
"= GoToDefinition Fi2 Output File: | <New Test Filex -
o D A0 Fterences s Mame Format for Test Class: [Class] Tests
& View Call Hierarchy Ctrl+K, Ctel+ T
Breakpoint » MName Format for Test Method: | [Method]Test
&k RunTo Cursor CHil+F10 P T PR
Run Flagged Threads To Cursor Cmemm——— o
W8
% Cut Carl+ X
C Ctrl+C
B o i] ok || cancel
Paste Crl+ ¥
Page 3 of 9

Y
N

Assembled by RunPDF.com

https://www.visualstudio.com/docs/test/developer-testing/getting-started/create-unit-tests-menu
http://www.runpdf.com

Run unit tests

1. Open Test Explorer.

DEBUG TEAM TOOLS TEST = ARCHITECTURE AMALYZE WINDOW HELP

P Internet Explorer ~ Run rz A : H-85
Debug 3
Playlist 3
ests = - @ Home
Test Settings 3
Analyze Code Coverage k
Profile Test

Windows L Test Explorer

2. Run unit tests.

ﬂ HelloWorld - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE AMN4

e - g2 e - = P Internet Explorer ~ % ~ Debug ~ p ; ISR

Test Explorer - R B Gl HomelndexTests.cs A X
@ [t - Search P -| | "z HelloWorldTests. HomeControllerinde]
Flusing System;
b] Streaming Video: Improving quality with unit tests and fakes = using System.Collections.G
- L using System.Text;
Run AL}l Run.. » | Playlist: All Tests = it A £yt i
4 Not Run Tests (1) using System.Web.Mvc;

using HellowWorld;
using HelloWorld.Controlle
using Microsoft.VisualStud

4) HomelndexTests

You can see the unit tests that passed or failed in Test Explorer.

ﬂ HelloWorld - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE AMN4

e - g~ 2 w - = P Internet Explorer ~ % ~ Debug ~ p ;

xow I M | HomelndexTests.cs = X

Test Explorer =
@, [tz - | Search P -| | "z HelloWorldTests. HomeControllerinde]

Flusing System;
] Streaming Video: Improving quality with unit tests and fakes = using System.Collections.G

- L . using System.Text;
Run All | Run.. > | Playlist: All Tests it A £yt i

4 Passed Tests (1) using System.Web.Mvc;

using HellowWorld;
e kel =51ns using HelloWorld.Controlle

using Microsoft.VisualStud

Generate unit tests with IntelliTest

When you run IntelliTest, you can easily see which tests are failing and add any necessary code to fix them. You can select which of the generated
tests to save into a test project to provide a regression suite. As you change your code, rerun IntelliTest to keep the generated tests in sync with your
code changes. To learn how, see Generating unit tests for your code with IntelliTest.

IntelliTest Exploration Results - stopped
Triangle ClassifyBySideLengthsfint ~ % | b Run | I F £ | 1 0Wamings

® & 04 I 16/16 blocks, 0/0 asserts, 12 runs

lengths result Summary/Exception Error Message I Details:
€1 null MullReferenceException Object refer... || # Stack trace: _
Q29 IndexOutOfRangeException Index was out... Syatemhll elerens eF e plic:
03 o Indext Ramep-Exception Index was out... at Triangle.ClassifyBySideLengt...
at TriangleTest.ClassifyBySidele..
Q4 {00 IndexOutOfRangeException Index was out.. Sk 3
@ 5 000 Invalid
@ 6 {55380} Invalid
@ 7 67,00 Inwvalid
@ 8 {422 536,6.. Scalene
u 9 {528, 413, 5.. lsosceles
A an - -
Page 4 of 9 X Assembled by RunPDF.com

o

https://msdn.microsoft.com/library/dn823749.aspx
http://www.runpdf.com

LW L e] IZ0sCeles
@ 1 {1,512,512) Isosceles
@ 12 {512,512, 5.. Equilateral

Run unit tests with Test Explorer

Use Test Explorer to run unit tests from Visual Studio or third-party unit test projects, group tests into categories, filter the test list, and create, save,
and run playlists of tests. You can also debug tests and analyze test performance and code coverage. To learn how, see Run unit tests with Test

Explorer.
Test Explorer * 3 x
G iz -& sean P -

Run All | Run.. =

4 Failed Tests (1)

(%) Accountinfo_GetAccountinfo_lnvalidData

4 Skipped Tests (1)
1 Accountinfo_addCheckingAccount_InvalidData

4 Passed Tests (2)

®) Accountinfo_AddCheckingAccount_ValidData <1ms

®) Accountinfo_AddSavingsAccount_ValidData < 1ms
4 Mot Run Tests (1)

) Accountinfo_CreateAccount_lnvalidData

AccountInfo_GetAccountInfo_InvalidData
Source: UnitTestl.cs line 11

g Test Failed - AccountInfo_GetAccountInfo_InvalidData

Message: Assert.IsTrue failed. ‘1234’ is not an authorized
account

Elapsed time: 216 ms

4 StackTrace:

AccountlnfoTests. Accountinfo_GetAccountinfo_In...

Use code coverage to determine how much code is being tested

To determine what proportion of your project's code is actually being tested by coded tests such as unit tests, you can use the code coverage feature
of Visual Studio. To guard effectively against bugs, your tests should exercise or 'cover' a large proportion of your code. To learn how, see Use Code
Coverage to Determine How Much Code is being Tested.

C1 Build* +

| Ganetal Team Foundation Build uses a build process template defined by a Windows Workflow (XaAML) file.

) The behavior of this template can be customized by setting the build process parameters provided
Trigger by the selected templata,
Workspace

. Install Windows Web Services APl
| Build Defaults

| Default Template (% Show details

| Retention Policy
Build process parameters:

4 1. Required

[Items to Build Build $/TestScrum/Fabrikam.Math/Fabrikam.Math.sIn...
4 2. Basic
4 Automated Tests Run tests in test sources matching ***test*.dll using...
4 1. Test Source Run tests in test sources matching **\"test*dll using set...
Fail Build On Test Fail False
4 Run Settings Default run settings with code coverage enabled

Run Settings File

Type of run set... CodeCoverageEnabled ;I

Type of run settings
Select the type of run settings to use with test sources,

Q&A

Q: Can | run unit tests in Visual Studio if | use a different unit test framework?

Page 5 of 9 L Assembled by RunPDF.com

https://msdn.microsoft.com/library/hh270865.aspx
https://msdn.microsoft.com/library/dd537628.aspx
http://www.runpdf.com

A: Yes, use the plug-in for that framework so that Visual Studio's test runner can work with that framework. Here are the unit testing framework plug-
ins for Visual Studio that are available right now.

1. Use Visual Studio's extension manager to download your plug-in.

ba HelloWorld - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE ANA
Q- -2 - = P InternetExpl & Attach to Process..
E? T *§ Connect to Database...
E Elbody { %= Connectto Server...
5 padding-top: 68px; G% Add SharePoint Connection...
1] padding-bottom: 48px;

3 SQL Server
- B &

1 Code Snippets Manager...

= /* styles for validation helpers */ s J
g El.field-validation-error { Choose Toolbox ltems...
(=] . .
& : color: #b94a48; Add-in Manager...
=) Library Package Manager
2 . field-validation-valid { ([-3 Ederooneand updais,_,)
2 display: none;

1 Create GUID

2. Download your plug-in from the Visual Studio Gallery under Tools/Testing, or search for it if you know the name.

b Installed

4 (Online

4 Visual Studio Gallery

b Controls

b Templates

4 Tools
Build
Coding
Data
Documentation
Extension SDK
LightSwitch
Modeling
Other
Performance
Process Templates
Programming Languages
Reporting
Security
Setup & Deployment
SharePoint
Source Control
Start Pages
Team Development
Testing
Web

b Samples Gallery

b Updates

=

=

3

Muost Popular -

NUnit Test Adapter... [N
NUnit adapter for =

integrated test execution...

ReSharper
The legendary .NET productivity tool: find
and fix errors and code smells; navigate a...

xUnit.net runner for Visual Studi...
¥Unit.net is a unit testing tool for the .NET
Framewaork, Written by the original invent...

Unit Test Generator
Generates unit test code for methods in
classes under test,

Chutzpah Test Adapter for the T...
Chutzpah adapter for the Visual Studio Unit
Test Explorer. Chutzpah is an open source...

Chutzpah Test Runner Context M...
Chutzpah is an open source JavaScript test
runner which helps you integrate JavaScri...

Selenium components for Code...
Selenium components for Coded Ul Cross
Browser Testing

Image Watch
Provides a watch window for visualizing in-
memory images (bitmaps) when debuggi...

Search Vig

Created
Version:
Downloal
Rating: |
Maore Inf
Report Ex

Hom
Run &
Faileg
Show
arT
QT
Skipp
Show

LT
LT
BT

3. Create a class library project.

FILE = EDIT VIEW
MNew
Open
Add

Close

El Close Solution

B Save Content\Site.css

Ctrl+5

DEBUG TEAM

ﬂ HelloWorld - Microsoft Visual Studio
PROJECT BUILD

TOOLS
»
* | i@ Web Site...
» T@ Team Project..

B File..
Project From Existing Code...

TEST ARCHITECTURE AN/

Ctrl+5Shift+
Shift+Alt+

Ctrl+MN

Add the project to your solution.

Page 6 of 9

Y
N

Assembled by RunPDF.com

http://go.microsoft.com/fwlink/?LinkID=246630
http://www.runpdf.com

I Recent

4 |nstalled

4 Templates

MET Framework 4.5

~ll

Cih\Users\JHartnett\Source\Workspaces'\Fabrikam Fiber2\HelloWorld

~ | Sort by: | Default -

Windows Forms Application

WPF Application

Console Application

Class Library

Portable Class Library

WPF Browser Application

Empty Project

Windows Service

WPF Custorn Control Library

WPF User Control Library

Click here to go online and find templates.

b Visual Basic r:ji
4 Visual C# it
Windows Store EI:*
Windows
b Web ni‘a‘
b Office/SharePoint &
Cloud ni‘i’
LightSwitch &
Reporting c2
Silverlight <H
-
wer N
Worlflow Eﬁ
b Visual C++
b Visual F2 H C#
SOL Server Cl!!
b JavaScript €«
Python i |
- - - -
b Online
Mame: HelloWorldTests-MNUnit
Location:
Solution: ﬂ#\dd to solution j

Solution name:

HelloWorld Tests-MUnit

4. In the class library project, run NuGet to install the plug-in.

X Site.css

dTests_NUnit.C ~

System;
System.Collections.Generic;
System.Ling;

System.Text;
system.Threading.Tasks;

pace HelloWorldTests_NUnit

references

ublic class Classl

1

| » 4 .

fe

Solution Explorer
@ eo-endnm £=&
Search Selution Explorer (Ctrl+;) P~

+fa] Solution 'HelloWerld' (3 projects)
b a5l HelloWorld
b +E] HelloWorldTests

4 o= HelloWorldT ests-MWUnit

Build

Rebuild

Clean

View 4
Analyze 4

Scope to This

Mew Solution Explorer View

Show on Code Map

Build Dependencies 3

Add 2

Manage NuGet Paci:agﬁ..)

NuGet is an extension of Visual Studio that you can use to add and update libraries and tools for your projects.

5. Install your plug-in. If you know the name, you can search for it online.

MuGet: HelloWorldTests-MUnit + X

Package source: |api.nugetorg ~

NuGet Package Manager: HelloWorldTests-NUnit

=[] Include prerelease | nunit X -

Filter: All

: N NUnit

MNUnit is a unit-testing framework for
all .Net languages with a strong TDD focus.

FY

| NUnit

Action: Version:

Install - 264 -
Page 7 of 9

Y
N

Assembled by RunPDF.com

https://github.com/nuget/home
http://www.runpdf.com

N MUnit.Runners
MUnit is a unit-testing framewaork for
all .Net languages with a streng TDD focus.
The framework is referenced in your project.
X Site.css packages.config i X - ESIMLESTILIES
dTests MNUnit.C ~ - G& o-20 40 @ 5 Eﬁ
System; + i
System.Collections.Generic; 3% Search Solution Explorer (Ctrl+;) Pl
System.Ling; — +fg] Solution 'HelleWorld' (3 projects)
System.Text; b s HelloWorld
System.Threading.Tasks; b +E] HelloWorldTests
pace HellokWorldTests_NUnit 4 HelIoWorIc!Tests-NUmt
= b+ & Properties
references 4 =m0 References
ublic class Classl Microsoft.CSharp
u-B System
u-B System.Core
. In the class library project, add a reference to the project you want to test.
Solution Explo
& e-eRdAD £
Search Selution Explorer (Ctrl+;) Pl
fad Selution 'HelloWorld' (2 projects)
b HelloWorld
4 HelloWorldTests
b Properties
Add Reference...)
Add Service Reference...
Bi Manage MuGet Packages...
Scope to This
MNew Solution Explorer View
. Select the project that contains the code you'll test.
b Assemblies
4 Projects
Solution
b COM
. Code your unit test.
Site.css packages.config ® X = | Solution Explorer = eow B
"E:HelloWoLr'ldTJests_NEJnit.C ~ @ HellowWorldTest() - A4 e-rendim o *
. - - S
. System.c?llectlons.Gener‘lc, + | Search Solution Explorer (Ctrl+;) P
using System.Ling; £
using System.Text; +fa] Selution 'HelloWorld' (3 projects)
using System.Threading.Tasks; [ﬁ HelloWorld
Es:i.ng NUnit.Fr'amewor'k;) b +E] HelloWorldTests
. 4 +[c# HelloWorldTests-MUnit
Egamespace HelloWorldTests Nunit b + 4 Properties
4 m-B References
Ay =-8 HelloWorld
Bl public class Classl =B Microsoft.CSharp
i —_ =8 nunit.framework
[Test] B Systemn
Oreferences
= public void HellowdorldTest() R octemitie
I =B System.Data
I/ Assert u-8 Systern.Data.DataSetExtensions
Assert.True(true); =8 Systemn.Xml
| 1 =8 System . Xml.Ling
L } P+ c* Classl.cs
L +§ packages.config

X
Page 8 of 9 -

Assembled by RunPDF.com

http://www.runpdf.com

See also

e Create Unit Tests command

e Generate tests with IntelliTest
e Run tests with Test Explorer

e Determine code coverage

e System test with Visual Studio
e Create system tests with VS

e Run system tests with VS

Help and support

Submit bugs through Connect, make suggestions on Uservoice, and send quick thoughts using the Send-a-Smile E;] link in the Visual Studio, Team
Services, or TFS title bar. We look forward to your feedback.

Visual Studio Related Sites

My Visual Studio Visual Studio documentation
Manage Visual Studio MSDN Home

Marketplace Channel 9

Integrate Azure

Visual Studio Blog

Products Support
Visual Studio Get Support
Visual Studio Team Services Submit a Bug
Visual Studio Code Submit an Idea
Download Forums
Compare

How to Buy

@ United States (English) Contactus Jobs Privacy Termsofuse Trademarks
Is this page helpful?

© 2016 Microsoft M icrOSOft

Page 9 of 9 L Assembled by RunPDF.com

https://www.visualstudio.com/docs/test/developer-testing/getting-started/create-unit-tests-menu
https://msdn.microsoft.com/library/dn823749.aspx
https://msdn.microsoft.com/library/hh270865.aspx
https://msdn.microsoft.com/library/dd537628.aspx
https://msdn.microsoft.com/library/jj620889%28v=vs.140%29.aspx
https://msdn.microsoft.com/library/jj620884%28v=vs.140%29.aspx
https://msdn.microsoft.com/library/dd548714%28v=vs.140%29.aspx
https://connect.microsoft.com/visualstudio
http://visualstudio.uservoice.com/forums/121579-visual-studio
https://my.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=703828
https://marketplace.visualstudio.com
https://www.visualstudio.com/integrate
https://msdn.microsoft.com/library/vstudio
https://msdn.microsoft.com/
https://channel9.msdn.com/
https://azure.microsoft.com/
https://blogs.msdn.com/b/visualstudio/
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.visualstudio.com/products/visual-studio-team-services-vs
https://code.visualstudio.com/
https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs
https://www.visualstudio.com/products/how-to-buy-vs
https://www.visualstudio.com/support/support-overview-vs
https://connect.microsoft.com/visualstudio
https://visualstudio.uservoice.com/forums/121579-visual-studio
https://social.msdn.microsoft.com/forums/vstudio/en-us/home?category=visualstudio%2cvslanguages%2cvstfs%2cnetdevelopment%2cvsarch
https://www.visualstudio.com/docs/test/developer-testing/getting-started/getting-started-with-developer-testing#
https://www.visualstudio.com/support/support-overview-vs
https://visualstudio.com/news/visual-studio-hiring-overview-vs
https://go.microsoft.com/fwlink/?LinkID=264782&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=266231&clcid=0x409
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.runpdf.com

) .]
o4 Visual Studio []

E Free Visual Studio @

Team Services > Test > User acceptance testing with Visual Stu.. «<* Share

Table of contents
Testing scenarios
¥ Manual and exploratory testing
Overview
* Get started with manual testing

¥ Advanced manual testing
techniques

User acceptance testing
Share steps between test cases

Repeat a test with different
data

Manage test results

* Manual testing with Microsoft
Test Manager

* Get started with exploratory
testing

* Advanced exploratory testing
techniques

* Exploratory testing with Microsoft
Test Manager

* Performance testing

* Continuous testing

* Developer testing tools
* Test lab management

API reference for test tools
User acceptance testing

Last Updated: 8/30/2016

IN THIS ARTICLE +

Team Services | TFS 2015
Today's faster development pace requires tools that enable test teams to more easily verify value based on business requirements, and the high
quality software demanded by customers. This type of testing is often referred to as user acceptance testing and is available as a feature in Visual

Studio Team Services and Team Foundation Server.

Typically you create a Test Suite using a formal requirement work item type. However, today's agile teams often prefer to work from User Stories or
Product Backlog items as their requirements.

Before you start

You must have already created work items and a test plan. If not, follow the steps in:

Page 1 of 4 L Assembled by RunPDF.com

https://www.visualstudio.com
javascript:void(0)
https://www.visualstudio.com/products/free-developer-offers-vs
https://www.visualstudio.com/docs/overview
https://www.visualstudio.com/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing
https://msdn.microsoft.com/library/dd286655(v=vs.140).aspx
https://msdn.microsoft.com/library/dd997832(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://msdn.microsoft.com/library/dd380739(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/perform-exploratory-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/explore-workitems-exploratory-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://msdn.microsoft.com/library/hh191621(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/performance-testing/performance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/continuous-testing/continuous-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/en-us/docs/test/lab-management/test-machines/install-configure-test-agents
https://msdn.microsoft.com/library/dd465178(v=vs.140).aspx
javascript:void(0);
https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog
http://www.runpdf.com

e Create your backlog
e Create a test plan

Assign and invite testers

Visual Studio Team Services makes it easy to assign testers to individual test cases. A typical scenario for user acceptance testing is the ability to not
just assign one tester to a test case (see Search for and assign testers) but assign multiple testers an entire set of tests.

This can also be accomplished by selecting the suite and choosing Assign testers to run all tests. This option also enables the sending of emails to

the testers assigned to the tests.

from Charles
VisualStudioOnline@microsoft.com

rbox

Hi

You have been assigned tests to run - View tests

Thanks,
Charles

[3 Invitation to run_Reviews and Testamenial Suite tests from Charles = O x
& https:/foutlook.live.com,/owa/projection.aspx
5 Replyall |v i Delete Junk |V wer x

Invitation to run _Reviews and Testamonial Suite tests

Mote: Invitation to run _Reviews and Testamonial Suite tests from Charles

(In certain cases, you may have to click the above link twice to view the tests assigned to you)

D Replyall | v

Wed 3/%/2016 506 oM

An important feature of user acceptance testing is that the testers may in fact be the business owners who created the original business

requirements.

Search for and assign testers

In scenarios where you have large development teams the ability search for an individual is also important. Choose Assign tester from the drop-
down menu. In the shortcut menu, choose Assign testers to run all tests and select the testers you want to include.

Partwuniimited

D Wisual Shatia Team Senites

HOME CO0E WIORK LD TEST PACKAGE * RELEASE

Testplan Paamators Rure Machines® Testcases Load test
—

Sprint & Chadksan 1d: B63)

RS " @ B w 1 Tests Charts

4 ChuckePan {10}

. i 554 2 As dervelnpern, | want 1o cTaaté u AT
il 555 2 As project lead, | wank to start wiusli..
07 ;A project beed, | wank to 2t up 3 da,
il 558 : As dewdoper, | want us to extend She

GET 2 A% TS Quy. | TIVE Ferver Saan this .

@ EE b Run

W% Jy Do explaratary testing

I
» w ETest suite: 664 : As developer, | want to create a Azure websit

L
i 5702 As dew manages. wilh muliiple Teams..
- 671 < &= dew manager. with multiple teams
i 6722 A an Ops guy. |want to ancura that..
& 573 : Ops neods the ability bo uicily rol.. HOME CODE WORK BUILD TEST PACKAGE® RELEASE
67 2 O ek the BbRLY to Guickly il Testplan Fammoters Rums Machres' Tes cases Load fest
— e
i 6752 Ops needs the ability to quickly roil.. €1 SELECT TESTERS. T RUN ALL THE TESTS IN SUITE - 56 : &5 DEVELORER. | WANT TO CREATE A ATURE WEBS!
g Sprirt & ChucksPian (d: 863} =
i 5702 Cpe e the abilty o quickly .. 53 P all She fest cases in S fest site 30 be run by moltiple testers. For eample. you can assign the bests
@ 677+ Ops needk the abiity ta quicky roL.. *w L5 # 8B = 0 acreptance festers. Then send them an email to let Bhem know Shat the Sests are ready o be un.
i B 5 s ek the sbility b quickly ol 4 ChuckaFlan [10} SHaCE I
I o wanst 10 Penis MUIIpHS USEes PR the S DT Cages in This 1851 suits. add thase users 00 This kst Teds
67 O nesch e absiily T quickly il - 1 664 A ewdaper. | want to crase ., all the test cases 107 each Tesier,

il e s r -

o e el e ——

[L Displry Hame or Mirosott Account * | Browse | Check name
L M fhabic Altg 4 I ata laber time you decice to remove 3 tester from this list for this suite, Hhen the tests that were creatnd
L e requiremean -ased suse b £
g BT o0 Wow g o Gusite a s
- e : | [Send emsl 1o the testeey
e a
£ Opan test suis Subpct
- &7 = iewatabion to nun 654 2 Ac devoloper, | want to craste a Ao wokcito and wpdat it from Yicual Studio oo thal
sy 1 Remame
e)
57 X Delee . Pimase verify the backog stuctues looks
L Tharks,
o : Chak
S D oepot
w5
AL S Addign hesters 1o run Al bests
Page 2 of 4 > Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/create-a-test-plan
http://www.runpdf.com

‘ 57 S asnign corfigurtions o st nate Hi
4 (BN - O el she shakty S packby ol 0

Set the Send email option to send all of them a notification email.

Assign configurations to test suites and test cases

You will often want to verify requirements by configuration. Do this by opening the shortcut menu for a test case and choosing Assign
Configurations.

B Test suite: BT arager, with multiple teams, | now nead to mar arch i
Tasin Coarts Ouicome A8 Tesier Al Wiew List Pune Best renils - Posiion fight
* New® Akiensng M M & oF P Rune L e € ¥ O
B Fagoed B4 finakie revsews and pstomear Tastomonial Windows firian Band., Charles Weliam Sierl, 207 (] Er]
e B Ernakile reviewss and Customer Tatscmania Windaws 10 Brian fiamc... Charkes Weiam Stert, 21" o Er
- W A B Windzas with Chiome Brian fianc.. Charkes Woiam Sterl, 201 o a3
[T Brian Fatd.. Charled Wiliam StarL., 2/] 24
L Bran faed. Chat tn e, 27
& Fused 03 =5
LT T - REvE Setected test caces r
® Acive 15 el Enabie reviens snd Customer Testomanad -
D Faied B Testdl 4
d o
® At DIE Testd ™ 2
® s 900 ol &~ Corigunsion s a v
[Pt paa Tl % Windews 10 Ercwsarnteet Expiarer H0Cpemating SyatercWindoes 10 r
® Acike 319 Tei® B Windows with Chema Erewnsarin et Exprer .0-Opmrtng SystermWindens 10 F
O Ealed 515 Test§ 4
& hoive 821 Tesif r
® acwe 030 vl P
Cance |
"

The test case will then be listed for each configuration. The test results will indicate which configuration was run.

Easily track results

A key principle of good user acceptance testing practice is to minimize the effort required to determine whether a requirement has been achieved.
There are two ways this can be achieved, you can focus on individual test runs and tests in the Test hub to see which failed or use the charts views
make it much easy and accessible to all members of Visual Studio Team Services makes this much easier.

HOME COBE WORK BUMD TEST PACKAGE® RELEASE

‘Welcome Cuvervew User Aoceptance + o
Test Cases by Tester Tester by Pri Configuration by outcome ChucksPlan - Chart
oo I T B notrun B Faded W Famsed I Mot appiica. W New W Completed
W Eocud
sacrin .. R & e
B - O] . S — e T W
Brian R k3 ¥ 2 1 K S S
4 ' e : wiedow. I | ey —|
st [¥ A = I]
schn baf I 4 ¥ window. [l = = I
Takal 2 2 2 1 oam
uncis_ [T
Oenizir.. [ET .]
iother) | = tecrer; R
a 1 z 3 4 5 e r 4+ & 8 w0 0 1] 1 'l
Test Cases by state Configuration UAT Chart Partsunlimited Epics Backlog (all)
Lars 30 darys
W ot ren B Faded I Passed I poot applica I windows 8 B Windoms ME I Windows wi .
W Eocced Windows 100 Il Linux &

Februwy 26 216
I e 12

I

Note: The dashboard display show here is also used for other types of testing such as continuous testing.

If you don't see the data or information you expect in the dashboard charts, verify that the columns in your data have been added to the Tests view.
For details see this blog post.

Page 3 of 4 Y Assembled by RunPDF.com

https://blogs.msdn.microsoft.com/visualstudioalm/2016/03/10/visual-studio-team-services-manual-testing-tips-charts-iterations-and-runs/
http://www.runpdf.com

Help and support

Submit bugs through Connect, make suggestions on Uservoice, and send quick thoughts using the Send-a-Smile [Z] link in the Visual Studio, Team
Services, or TFS title bar. We look forward to your feedback.

Visual Studio Related Sites

My Visual Studio Visual Studio documentation
Manage Visual Studio MSDN Home

Marketplace Channel 9

Integrate Azure

Visual Studio Blog

Products Support
Visual Studio Get Support
Visual Studio Team Services Submit a Bug
Visual Studio Code Submit an Idea
Download Forums
Compare

How to Buy

@ United States (English) Contact us Jobs Privacy Terms of use Trademarks
Is this page helpful?

© 2016 Microsoft Microsoft

Page 4 of 4 L Assembled by RunPDF.com

https://connect.microsoft.com/visualstudio
http://visualstudio.uservoice.com/forums/121579-visual-studio
https://my.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=703828
https://marketplace.visualstudio.com
https://www.visualstudio.com/integrate
https://msdn.microsoft.com/library/vstudio
https://msdn.microsoft.com/
https://channel9.msdn.com/
https://azure.microsoft.com/
https://blogs.msdn.com/b/visualstudio/
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.visualstudio.com/products/visual-studio-team-services-vs
https://code.visualstudio.com/
https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs
https://www.visualstudio.com/products/how-to-buy-vs
https://www.visualstudio.com/support/support-overview-vs
https://connect.microsoft.com/visualstudio
https://visualstudio.uservoice.com/forums/121579-visual-studio
https://social.msdn.microsoft.com/forums/vstudio/en-us/home?category=visualstudio%2cvslanguages%2cvstfs%2cnetdevelopment%2cvsarch
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing#
https://www.visualstudio.com/support/support-overview-vs
https://visualstudio.com/news/visual-studio-hiring-overview-vs
https://go.microsoft.com/fwlink/?LinkID=264782&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=266231&clcid=0x409
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.runpdf.com

) .]
o4 Visual Studio []

E Free Visual Studio @

Team Services > Test > Track test status in Visual Studio Team... «<* Share

Table of contents
Testing scenarios

¥ Manual and exploratory testing
Overview

¥ Get started with manual testing

Add, run, and track tests from
the Kanban board

Create test plans
Create test cases
Run manual tests
Track test status

* Advanced manual testing
techniques

* Manual testing with Microsoft
Test Manager

* Get started with exploratory
testing

* Advanced exploratory testing
techniques

* Exploratory testing with Microsoft
Test Manager

* Performance testing

* Continuous testing

* Developer testing tools
* Test lab management

API reference for test tools

Track test status

Last Updated: 8/4/2016

IN THIS ARTICLE +

Visual Studio 2015 | TFS 2015 | Previous version

Quickly view the status of your testing using lightweight charts. For example, find out how many test cases are ready to run, or how many tests are
passing and failing in each test suite. You can pin these charts to your home page, then all the team can see the progress at a glance.

N Visual Studio Team Services / FabrikamFiber +

HOME CODE 'WORK BUILD TEST
Test plan Parameters
Test suite: Web Team (Suite ID: 877)
Sprint 3: Web Team (Id: 876) -
o - = @ o Tests Charts

Page 1 of 9 L Assembled by RunPDF.com

https://www.visualstudio.com
javascript:void(0)
https://www.visualstudio.com/products/free-developer-offers-vs
https://www.visualstudio.com/docs/overview
https://www.visualstudio.com/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/create-a-test-plan
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/getting-started-with-manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://msdn.microsoft.com/library/dd380739(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/perform-exploratory-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/explore-workitems-exploratory-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://msdn.microsoft.com/library/hh191621(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/performance-testing/performance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/continuous-testing/continuous-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/en-us/docs/test/lab-management/test-machines/install-configure-test-agents
https://msdn.microsoft.com/library/dd465178(v=vs.140).aspx
javascript:void(0);
https://msdn.microsoft.com/library/dn282443%28v=vs.120%29.aspx
http://www.runpdf.com

LB =1 — -— m
+ N -
~ | 4 Web Team - @
4 Current Sprint Stories
o B R R g Web Team test plan - Chart Tests by Owner
&1 867 : [Login impraveme... M Passed M Notrun M Failed M Blocked M Passed M Not run
&l 868 : Service engineer.. Not applic... Not applic...
&l 869 : Service ENgineer...
&l 870: Service engineer.., s _
4 Regression Tests
Bl Bugs fixed this sprint :
Rovis... [
Bl E2E Tests
Kanch... SN
amal... |
0 2
Tests by Suite Test automation...
M Passed M Notrun B Failed M Blocked B Automated M Pl..
Not applic...
40
E26 Tests 35
30
o6 Ser.. N
. B :
869 : Ser... 1 2 1 20
13
bus: . IR -
70 Ser... | 1) E—
0
567 Lo.. I ¢
oF o
066 Lo.. IR &
0 1 2 3 4 5 6 7 B

Track testing progress

Use test results charts to track how your testing is going. Choose from a fixed set of pre-populated fields related to results. By default, a pie chart is
created for each test plan. This chart is grouped by the outcome field to show the latest results for all the tests in the test plan.

View this default chart from the Charts tab.

HOME CODE WORK BUILD TEST

Testplan Parameters

L4
Sprint 1: Value Shop Portal (d: 6) - Test suite: Value Shop Portal (Suite ID: 7)
~ | 4 Value Shop Portal + New~™]
b Regression Test

¥ WAL i Testing progress - Value Shop Portal ...

M Passed M Mot run [Failed Not applica...
M Paused M Blocked

Page 2 of 9 L Assembled by RunPDF.com

http://www.runpdf.com

a4

Add your own charts for test results to visualize what's important for your team. If you already know how to add a chart, jump to the examples below
of charts that you can create.

1. Select the test plan or test suite for your chart in the Test plan tab. Then create a new chart.

HOME CODE WORK BUILD TEST

Testplan Parameters

<
Sprint 1: Value Shop Portal (Id: 6) + ETest suite: Login (Suite 1D: 24)
- = = & k] Tests Charts
4 Value Shop Portal 0
3 Regression Test

: ’ + New test case chart
4 Sprint 1 Stories

to create the first chart for ‘Login’ s

hd =l Login (24) * New test result chart

& Merchant shops (15)

2. Select the chart type. Based on the chart, configure the fields that you want to use to group by, or for rows and columns.

CONFIGURE CHART x
Snapshot
Value Shop Portal - Chart
3 pie
Group by @ M tot run [l Passed M Failed Not applica...
El Bar Ouiceie = M Paused M Blocked
Walues ©
[l Column
Count ¥ of Tests
Stacked bar Sort (0

e Value ¥ Descending
Pivot table 2

OK Cancel

All charts roll up the information for any child test suites of the test plan or test suite that you selected.

3. Save the chart. Now it will be displayed in the charts tab for the test plan or test suite that you selected.

Test results examples

What's the test status for a specific test suite?

Select the test suite from the Test plan tab and add a test results pie chart. Group by outcome.

CONFIGURE CHART x
Snapshot
Value Shop Portal - Chart
A pie
Group by & M ot run [l Passed M Failed Not applica...
El gar (Outcome ") M Paused M Blocked
Walues (@
[l column R ‘
Count ¥ of Tests 8
Stacked bar Sart ¥ . !
P o
Page 3 of 9 N ¢ Assembled by RunPDF.com

o

http://www.runpdf.com

= . Value * Descending ~
Pivot table g

0K Cancel

What's the test status for user stories that my team's testing this sprint?
If you have created requirement-based test suites in your test plan for your user stories, you can create a chart for this.

1. Group these requirement-based test suites together in a static test suite.
2. Select this static test suite in the Test plan tab.

3. Add a test results stacked bar chart. Choose Suite as the rows pivot and Outcome as the columns pivot.

CONFIGURE CHART x
Snapshot
User story test status - Sprint 1 Stories

@ pie

Rows M Pazsed M Failed MM Notrun Not applica...
El Bar (Suite ")

Columns @
Wl Column

(Qutcome *) login 2
Stacked bar Values @
= Count ¥ of Tests Shopper... g 2
Pivot table :

Sort @

Vaue v Descending - Sroveer-]

Merchan... 4 2

OK Cancel

How many tests has each tester left to run?

Select your test plan from the Test plan tab and add a test results pivot table chart. Choose Tester as the rows pivot and Outcome as the columns
pivot.

CONFIGURE CHART x
Smapshot

Walue Shop Portal - Chart
@ pie

Rows
El Bar (Tester ')

& &

Columns @ & Pl
[l Column

(Dutcome ') a6
Stacked bar Values 0 ™

T4

Count * of |Tests 18

Pivot table
Sort @

Total 255

Value ¥ Descending ~

Page 4 of 9 Y Assembled by RunPDF.com

http://www.runpdf.com

OK Cancel

How can | check quality based on the configuration?
Use either a stacked bar chart or a pivot table chart. Choose Configuration as the rows pivot and Outcome as the columns pivot.
How can | track why tests are failing for my team?

For failure analysis, use either a stacked bar chart or a pivot table chart. Choose Tester for the rows and Failure type for the columns. (Failure type for
test results can only be set using Microsoft Test Manager.)

How can | track the resolution for failing tests for my team?

For resolution analysis, use either a stacked bar chart or a pivot table chart. Choose Tester for the rows and Resolution for the columns. (Resolution
type for test results can only be set using Microsoft Test Manager.)

Track test case status

Use test case charts to find out the progress of your test case authoring. The charts for test cases give you the flexibility to report on columns that you
add to the Tests tab. By default, test case fields are not added to the view in the Tests tab.

If you already know how to add a chart, jump to the examples below of charts that you can create for test cases.

1. Add any fields you want to use for your test case chart from the Tests tab with Column options. Then the fields will appear as choices in the
drop-down lists for grouping for your test case charts.

2. Select the test plan or test suite for your chart in the Test plan tab. Then add a test case chart.

HOME CODE WORK BUILD TEST

Test plan Parameters

<
Sprint 1: Value Shop Portal (Id: 6) » BETest suite: Login (Suite |1D: 24)
L g = = & @ e Tests Charts
4 Value Shop Portal]
b Regression Test

i ; + Mew test case chart
4 Sprint 1 Stories

; to create the first chart for "Login
i £1 Login (34) + New test result chart

gl Merchant shops (15)

All charts roll up the information for any child test suites of the test plan or test suite that you selected.

3. Select the chart type. Based on the chart, configure the fields that you want to use to group by, for rows and columns, or the range (trend
charts only).

COMFIGURE CHART x
Snapshot
Login - Test Case Readiness X
A pie]
Group by @ M Ready M Design
El Bar State bt
Values @
il Column ‘
Count * | of Testcases
Stacked bar Sort (0
s Value - Descending ~ 24
Pivot table 9
Trend

Page 5 of 9 L Assembled by RunPDF.com

http://www.runpdf.com

&l Stacked area .
& Area

Line

‘ oK | Cancel

You can't group by test suite for the test case charts.

4. Save the chart. Now it will be displayed in the charts tab for the test plan or test suite that you selected.

Test case examples

How can | track burndown for test case creation?

Use a stacked area trend chart to view the burndown for how many test cases are ready to be run. Choose State for the stack by field and Ascending
for the sort field.

CONFIGURE CHART x
Snapshot

Walue Shop Portal - Chart
A pie)

Stack by © B Design M Ready
El Bar Gtate ')

Values @
|H| Column A 50

Count ¥ | of |Testcases 45
Stacked bar Range () gg

30

Last f ks -
Pivot table = o gg

Sort ® 15
Trend
& sStacked area 0

s e s w> nB A s
o o & P P
& Area RUR AR S S S N

Line

oK Cancel

How can | track burndown for automation status?

Use a stacked area trend chart to view the burndown for how many test cases have been automated. Choose Automation status for the stack by field
and Ascending for the sort field.

If multiple teams own test cases in my test plan, can | see how many each team owns and the priorities of the tests?

If your teams are organized by area path, then your can use a test case pie chart. Choose Area path for the group by field.

If you want to know the priorities of these tests, then create a stacked bar chart. Choose Area path for rows and priority for the columns.
How can | track test creation status by team members?

Test case owners are tracked by the Assigned to field. Use a stacked bar chart or a pivot table chart. Choose Assigned to for rows and status for the
columns.

Share charts on your team's dashboard

Pin a chart to your team's dashboard for all the team to view. Use the chart's context menu.

B Test suite: Login (Suite 1D: 24)

p g [T

Page 6 of 9 Y Assembled by RunPDF.com

http://www.runpdf.com

L=t O S

+ Mew~ (]

Login - Test Case Readiness @

B Ready M Design # Edit

X Delete
‘ ¥ Pin to homepage

24

You can configure the dashboard widget to show a range of chart types.

Configuration
Title

Test results trend
Size

2x2 »
Build definition

Select a build definition hd

Primary chart

A - Stacked
Line |E| Column i

Secondary chart

Line

Pivot
Qutcome e

Values

Percentage ~ of Passed tests hd

Save Close

You must be a team administrator to do this, but team members with Stakeholder access can view the charts on the dashboard. Learn more about

dashboards. Or learn more about team administration.

Try this next

e Control how long to keep test results

Q&A

Q: Can | view the recent test results for an individual test case?

A: Yes, select the test case within a test suite and then choose to view the test details pane.

Page 7 of 9

Y
N

Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/report/dashboards
https://www.visualstudio.com/en-us/docs/work/scale/manage-team-assets
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
http://www.runpdf.com

B Test suite: Merchant shops (Suite 1D: 27)

Mo iteration dates

Tests Charts Qutcome Al Tester Al View List
+ New~ Add existing X i [P Run~ G Y
Outcome ID Title Tags Configurat
* @ Passed 36 E2E: Create a new shop E2E IE
@ Passed 36 E2E: Create a new shop E2E Firefox
View the recent test results for this test case.
) Mo iteration dates
s (Suite 1D-... Recent test results
Outcome Al Tester All View List Pare Test results | Position
#oeoe Y o 0 - Test case
Test suites
Ta Outcome Con
= I “ Test results J
ate a new shop E2E @ Pazsed Chrolwe
ate a new shop E2E @ Passed Chrome

Q: How is data shown in the charts for test cases that are in multiple test suites?

A: For test case charts, if a test case has been added to multiple test suites in a plan then it's only counted once.

For test result charts, each instance of a test that is run is counted for each of the test suites separately.

Q: Who can create charts?

A: You need at least a Basic access to create charts.

Q: How can | edit or delete a chart?

A: Select the option you want from the chart's context menu.

Q: How do | control how long | keep my test data?

A: Learn more here.

Help and support

Submit bugs through Connect, make suggestions on Uservoice, and send quick thoughts using the Send-a-Smile [] link in the Visual Studio, Team

Services, or TFS title bar. We look forward to your feedback.

Visual Studio
My Visual Studio
Manage Visual Studio
Marketplace

Integrate

Products

Visual Studio

Visual Studio Team Services
Visual Studio Code
Download

Compare

How to Buy

Related Sites

Visual Studio documentation
MSDN Home

Channel 9

Azure

Visual Studio Blog

Support
Get Support
Submit a Bug
Submit an Idea

Forums

Page 8 of 9

N
N

Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
https://connect.microsoft.com/visualstudio
http://visualstudio.uservoice.com/forums/121579-visual-studio
https://my.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=703828
https://marketplace.visualstudio.com
https://www.visualstudio.com/integrate
https://msdn.microsoft.com/library/vstudio
https://msdn.microsoft.com/
https://channel9.msdn.com/
https://azure.microsoft.com/
https://blogs.msdn.com/b/visualstudio/
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.visualstudio.com/products/visual-studio-team-services-vs
https://code.visualstudio.com/
https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs
https://www.visualstudio.com/products/how-to-buy-vs
https://www.visualstudio.com/support/support-overview-vs
https://connect.microsoft.com/visualstudio
https://visualstudio.uservoice.com/forums/121579-visual-studio
https://social.msdn.microsoft.com/forums/vstudio/en-us/home?category=visualstudio%2cvslanguages%2cvstfs%2cnetdevelopment%2cvsarch
http://www.runpdf.com

@ United States (English) Contact us Jobs Privacy Terms of use Trademarks
Is this page helpful?

© 2016 Microsoft IMlicrosoft

Page 9 of 9 L Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status#
https://www.visualstudio.com/support/support-overview-vs
https://visualstudio.com/news/visual-studio-hiring-overview-vs
https://go.microsoft.com/fwlink/?LinkID=264782&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=266231&clcid=0x409
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.runpdf.com

) .]
o4 Visual Studio []

E Free Visual Studio @

Team Services > Test > Run manual tests in Visual Studio Team.. «<* Share

Table of contents
Testing scenarios
¥ Manual and exploratory testing
Overview
¥ Get started with manual testing

Add, run, and track tests from
the Kanban board

Create test plans
Create test cases
Run manual tests
Track test status

* Advanced manual testing
techniques

* Manual testing with Microsoft
Test Manager

* Get started with exploratory
testing

* Advanced exploratory testing
techniques

* Exploratory testing with Microsoft
Test Manager

* Performance testing

* Continuous testing

* Developer testing tools
* Test lab management

API reference for test tools

Run manual tests

Last Updated: 8/4/2016

IN THIS ARTICLE +

Visual Studio 2015 | TFS 2015 | Previous version

Run your manual tests and record the test results for each test step using Microsoft Test Runner. If you find an issue when testing, use Test Runner to
create a bug. Test steps, screenshots, and comments are automatically included in the bug.

You just need Basic access to run tests that have been assigned to you with Visual Studio Team Services. Learn more about the access that you need
for more advanced testing features.

1. If you haven't already, create your manual tests.

2. Select a test from a test suite and run it.

m Visual Studio Team Services / FabrikamFiber +

Page 1 of 7 L Assembled by RunPDF.com

https://www.visualstudio.com
javascript:void(0)
https://www.visualstudio.com/products/free-developer-offers-vs
https://www.visualstudio.com/docs/overview
https://www.visualstudio.com/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/overview
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/work/kanban/add-run-update-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/create-a-test-plan
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/getting-started-with-manual-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/user-acceptance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://msdn.microsoft.com/library/dd380739(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/perform-exploratory-tests
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/explore-workitems-exploratory-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://msdn.microsoft.com/library/hh191621(v=vs.140).aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/performance-testing/performance-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/continuous-testing/continuous-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/developer-testing/developer-testing
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/en-us/docs/test/lab-management/test-machines/install-configure-test-agents
https://msdn.microsoft.com/library/dd465178(v=vs.140).aspx
javascript:void(0);
https://msdn.microsoft.com/library/dd286725%28v=vs.120%29.aspx
https://www.visualstudio.com/products/visual-studio-online-basic-vs
https://www.visualstudio.com/pricing/visual-studio-online-pricing-vs
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/getting-started-with-manual-testing#test-cases
http://www.runpdf.com

HOM

= -

Fabrikam Fiber: Spr... =

E CODE WORK BUILD

Test plan

<

@ = Requirement ID: 3714

4 Sprint 1

TEST

+ New Add existing

& 3714: Chan...

-

5 3715 : Welc... QOutcome

B 3716:Review v || Active
| Active
| Active
| Active

D

377
3719
3721
3720

Title

Test suite 3714 : Change initial view (Suite ID: 30517)

Change colors on initial view

Change initial page size

Incorrect settings give warning mess...

Change layout of initial view

Cenfigu.,
‘Windows
‘Windows
‘Windows
Windows

Microsoft Test Runner opens and runs in a new browser.

3. Start the app that you want to test. Your app doesn't have to run on the same computer as Test Runner. You just use Test Runner to record
which test steps pass or fail while you manually run a test. For example, you might run Test Runner on a desktop computer and run your
Windows 8 store app that you are testing on a Windows 8 tablet.

1.

“ﬂ Save and dlose | B Create bug

3717: Change colors on initial view

Open the home page for the web site

EXPECTED RESULT
Home page is displayed
Click settings icon

EXPECTED RESULT
Settings page is displayed

& Microsoft Test Runner - Windows In... = O

Change the default template to modern and click

submit

EXPECTED RESULT

The home page is displayed with the modern lock

see attached screenshot

|E] http s wisualstudio

S chs SMS Tool f: Development T

HOME

wel

4. Mark each test step as either passed or failed based on the expected results. If a test step fails, you can enter a comment on why it failed.

1.

.
m Save and dose | D Create bug

3717*: Change colors on initial view

Open the home page for the web site
EXPECTED RESULT

Home page iz displayed

Click zettings icon

EXPECTED RESULT

Settings page iz displayed

COMMENT

Change the default template to modem and click submit

EXPECTED RESULT

& Microsoft Test Runner - Windows In... —

L

0

The home page is displayed with the modern lock see attached

soreenshot

homepagemodern. png

x

Page 2 of 7

HOME PRICING

welcome

Services
Focus on y¢

»J

N
N

Assembled by RunPDF.com

http://www.runpdf.com

5. Create a bug to describe what failed.

3 Create bug +*

¥ nﬂ Save and
3717* Change cclors on initial view

1. Qpen the home page for the web site

EXPECTED RESULT

Hame page is displayed
Kew Bua 1+ Ei

2 Clicksettings icon lew Bug T+ Fie
EXPECTED RESLLT
Settings page iz displayed ¢ 2
CORMMENT
Settings page is not displ Tags Add_

3. Change the default ternpl

homepagemodern.png

EXPECTED RESULT

The home page is displayf STATUS CLASS
Azzigned To <Mo one> T Area
State Active = |terati
Reazon Mew -

REPRD STEPS SYSTEM IMFO TEST CASES (1)

Id 'Title' cannot be empty.

Copy template URL

52172013 11:31 AM Bug filed on "Change colars on initial view"

Step no. Result
1. Passed

2, Failed

Title
Open the home page for the web site

Expected Result
Home page iz displaysd

Click settings icon

Expected Result
Settings page is displayed

Comments: Settings page is not displayesd

The steps and your comments are automatically added to the bug. Also, the test case is linked to the bug.

If Test Runner is running in an Internet Explorer 11 or a Chrome window, you can copy a screenshot from the clipboard directly into the bug.

6. You can see any bugs that you have reported during your test session.

& Microsoft Test Runner - Windows In...

¥ Save and do :3 Create bug +

3717: Change celors on initial view
1. Open the home page for the web site

EXPECTE! 45

Home page is displayed

2. Click settings icon
EXPECTED RESLLT
Settings page is displayed
COMMENT

Settings page is not displayed

EXPECTED

RESULT

sttached screenshot

3718: Settings page is not displayed

1~

3. Change the default template to modern and click submit

The home page is displayed with the modern look see

=)

HOME PRICING

welcome

Windows 8

7. When you've run all your tests, save the results and close Test Runner. Now, all the test results are stored in Visual Studio Team Services.

8. View the testing status for your test suite.

Test plan

Fabrikam Fiber: Sprint 1 (1d: 1) ~

Test suiter 3714 - Change initial view (Suite |

Page 3 of 7

Y
e

Assembled by RunPDF.com

http://www.runpdf.com

Requirement ID: 3714

+ - & =
4 Sprint 1 + New Addexisng X @ W ¢
- 3'5 3714 : Change initial view (4) =
Outcome D Title
5 3715 : Welcome back
- I Passed EYav Change colors on initial view
&l 3716 : Review
I Passed Eral Change initial page size
I Failed 3721 Incorrect settings give warning n
I Active r20 Change layout of initial view

You see the most recent results for each test.

Try this next

e View your test progress with lightweight charts
e Control how long to keep test results

Q&A

Q: How do | rerun a test?

A: Just select any test and choose Run.

Q: Can | run all the tests in a test suite together?

A: Yes, select a test suite and choose Run. This runs all the active tests in the test suite. If you haven't run a test yet, its state is active. You can reset the
state of a test to active if you want to rerun it.

HOME CODE WORK BUILD TEST
Test plan
<
Fabrikam Fiber: Sprint 1 (Id: 1) = Test suite: 3714 : Change initial view (Suite |D: 30
Requirement ID: 3714
*ox H =
4 Sprint 1 + New Add existing X u [} c >
- &1 3714 : Change initial... -
O run bk Outcome D Title
I Passed 3719 Change initial page size
I Rename - I Failed Sl Change colors on initial view
M poiaes I Active 3720 Change layout of initial view
I Active 371 Incorrect settings give warning messags

Q: Can | choose a build to run tests against?

A: Yes, Choose Run and then select Run with options. Any bug filed during the run will automatically be associated with the selected build, and the
test outcome will be published against that build.

Q: | want to do some exploratory testing before | create manual test cases. Can Test Runner help with this?

A: Not from the Test hub. But if you use Microsoft Test Manager, it will record your actions, screenshots and other data while you're exploring your
app. If you create a bug, all this data is included automatically.

Q: Can | add a screenshot to the test results when | am running a test?

A: Yes, take a screenshot, save it to a file and add the attachment. The file is stored with the test results.

(=) i B httpesstes wisualstudia,

-] -H Save and dose | m Create bug *

3717: Change colors on initial view *? Add camment .| 95 9 SMSTool g Development To

| Add sttachment b Team Fou

1. Open the home page for the web site
EXPECTE] T

Home page iz displayed HOME PRICING

3 ik sattines ienn] '

Page 4 of 7 L Assembled by RunPDF.com

https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/track-test-status
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
https://msdn.microsoft.com/library/hh191621.aspx
http://www.runpdf.com

welcome

EXPECTED RESULT

Settings page iz displayed

COMMENT

Settings page is not displayed S -
ervices

3. Change the default template to modern and click submit Focus on Y

EXPECTED RESULT
The home page is displayed with the modern look see
attached screenshot

»J

..

Q: Can | add a screenshot to a bug when | am running a test?

A: Yes, if Test Runner is running in an Internet Explorer 11 or a Chrome window, you can copy a screenshot from the clipboard directly.

Q: Can | fix my test steps while I'm running a test?

A: Yes, if you have the Test Manager for Visual Studio Team Services. You can insert, move, or delete steps. Or you can edit the text itself. Use the edit
icon next to the test step number to do this.

ave and close | m Create bug +

925: Change colors on initial view D) ~

1. Open the home page for the web site

EXPECTED

ULT
Home page is displayed

2 Click settings icon

EXPECTED RESULT
Settings page is displayed

3. Change the default template to modern and click
submit
EXPECTED RESULT
The home page is displayed with the modern look -
see attached screenshot

The tool to edit the test steps is shown.

] Save and dose | _"_I Create bug +*

3717% Change colors on initial view 5« [l 9% s SMSTool g Development To

1. Open the home page for the web site
HOME
weld

EXPECTED RESULT

3. Click zettings icon

EXPECTED RESULT
Settings page is displayed

4. Change the default template to modern and click submit

EXPECTEL RESULT
The home page is displayed with the modern look see attached
screenshot

Q: Can | collect additional data while I'm running a test?

Page 5 of 7 Y Assembled by RunPDF.com

http://www.runpdf.com

A: If you use Microsoft Test Manager to run your tests, you can collect user actions, system logs, screen and audio recordings and other additional
data. If you're using Visual Studio 2015, Visual Studio 2013, or Visual Studio 2012 Update 3, you can run a test using Microsoft Test Manager from the
Test hub. (The most recently installed version of MTM will launch.)

Test suite: 3714 - Change initial view (Suite ID: 8447)
Requirement ID: 3714

+ New Add existing X ud (] (g4 P Run~ Q (/] (%)
Outcome D Title P Run
- I Active n7 Change colors on initial view 1ett
I Active EXR L] Change initial page size P Run using dient rett
I Active r20 Change layout of initial view Windows 8 Jamal Hartnett

Q: Can | capture on-demand image actions?

A: Yes, in addition to screenshots and screen recordings you can capture an on-demand image action log from your web apps. You specify the
browser window on which to capture your actions € all actions on that window (any existing or new tabs you open in that window) or any new child
browser windows you launch, will automatically be captured and correlated against the steps being tested in the Web Runner. These image action
logs are then added to any bugs you file during the run and also attached to the current test result.

E] Microsoft Test Runner - Google Chrome — O >

/tfs/DefauliCollection/AgileMain/Search%20tee

H ﬁ Save and close | m Create bug | [

Your actions are getting recorded

63: Test Scenario; By user reviews - M

Q: How do | control how long | keep my test data?
A: Learn more here.

Help and support

Submit bugs through Connect, make suggestions on Uservoice, and send quick thoughts using the Send-a-Smile [Z] link in the Visual Studio, Team
Services, or TFS title bar. We look forward to your feedback.

Visual Studio
My Visual Studio
Manage Visual Studio
Marketplace

Integrate

Products

Visual Studio

Visual Studio Team Services
Visual Studio Code
Download

Compare

How to Buy

Related Sites

Visual Studio documentation
MSDN Home

Channel 9

Azure

Visual Studio Blog

Support
Get Support
Submit a Bug
Submit an Idea

Forums

@ United States (English) Contactus Jobs Privacy Termsofuse Trademarks

© 2016 Microsoft IWlicrosoft

Page 6 of 7

N
N

Is this page helpful?
N]

Assembled by RunPDF.com

https://msdn.microsoft.com/library/jj635157.aspx
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/how-long-to-keep-test-results
https://connect.microsoft.com/visualstudio
http://visualstudio.uservoice.com/forums/121579-visual-studio
https://my.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=703828
https://marketplace.visualstudio.com
https://www.visualstudio.com/integrate
https://msdn.microsoft.com/library/vstudio
https://msdn.microsoft.com/
https://channel9.msdn.com/
https://azure.microsoft.com/
https://blogs.msdn.com/b/visualstudio/
https://www.visualstudio.com/products/vs-2015-product-editions
https://www.visualstudio.com/products/visual-studio-team-services-vs
https://code.visualstudio.com/
https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs
https://www.visualstudio.com/products/how-to-buy-vs
https://www.visualstudio.com/support/support-overview-vs
https://connect.microsoft.com/visualstudio
https://visualstudio.uservoice.com/forums/121579-visual-studio
https://social.msdn.microsoft.com/forums/vstudio/en-us/home?category=visualstudio%2cvslanguages%2cvstfs%2cnetdevelopment%2cvsarch
https://www.visualstudio.com/en-us/docs/test/manual-exploratory-testing/getting-started/run-manual-tests#
https://www.visualstudio.com/support/support-overview-vs
https://visualstudio.com/news/visual-studio-hiring-overview-vs
https://go.microsoft.com/fwlink/?LinkID=264782&clcid=0x409
https://go.microsoft.com/fwlink/?LinkID=266231&clcid=0x409
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.runpdf.com

Page 7 of 7 Y Assembled by RunPDF.com

http://www.runpdf.com

